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Abstract

The ability to generate new concepts and ideas is among the most
fascinating aspects of human cognition, but we do not have a strong
understanding of the cognitive processes and representations underly-
ing concept generation. Previous work in this domain has focused on
how the statistical structure of known categories generalizes to gener-
ated categories, overlooking whether (and if so, how) contrast between
the known and generated categories is a factor. In this paper, we
explore a different factor: contrast from known categories. We pro-
pose two novel approaches to modeling category contrast: one focused
on exemplar dissimilarity and another based on the representative-
ness heuristic. Across three behavioral experiments, we find that people
generate new categories that contrast from observed categories and
distribute exemplars acoss ”unoccupied” regions of stimulus space.
The model based on the representativeness heuristic captured human
category generation better when the known category was well cap-
tured by a Gaussian distribution. Conversely, the exemplar-based model
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captured human generated categories better when the known cate-
gory was not Gaussian distributed. Our results suggest contrast is a
fundamental principle used in generating exemplars of a new category.

Keywords: categorization, concepts, category learning, generation,
computational modeling, exemplar models, representativeness
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2 Introduction

Creating new ideas is one of the most fascinating and important human capa-
bilities. For example, cell phones and smart phones are newly created categories
of objects that young and old adults learned and have become reliant on in the
last few decades. Computational researchers have identified generating novel
objects and objectives as one of the defining, and most difficult to formal-
ize, characteristics of intelligent life (Lake, Ullman, Tenenbaum, & Gershman,
2017; Lehman & Stanley, 2011; Taylor et al., 2016). Recently, generative deep
learning methods, such as stable diffusion Rombach, Blattmann, Lorenz, Esser,
and Ommer (2022) and ChatGPT, have captivated researchers and the overall
public. Their power to generate novel images and text is astonishing. They have
been reported to win an art contest Roose (2022), and to pass a major grad-
uate medical and business school examinations Kung et al. (2023); Terwiesch
(2023). What are the major principles underlying category generation?

Despite recent successes in generation from machine learning methods, the
cognitive mechanisms that enable people to innovate are not well understood
and are understudied by scientists. In part, this is due to the inherent dif-
ficulty of designing and conducting experiments that test these capabilities.
How would a scientist devise an experiment that induces a participant to cre-
ate new categories that are as interesting as cell phones and smart phones?
Devising such an experiment is still beyond our capability. Instead, we take
a step towards this goal, and investigate the fundamental constraints and
expectations that people have when they generate new categories.

Creating new concepts are, however, not altogether different from the types
of behaviors typically studied in cognitive psychology laboratories. In partic-
ular, generating a member of a novel class can be considered a ‘special case’
application of existing category knowledge (Kemp & Jern, 2014; Kurtz, 2015).
Research in categorization typically focuses on what properties of a category
affect human learning of an object’s category given its features (Kurtz, Lever-
ing, Stanton, Romero, & Morris, 2013; Shepard, Hovland, & Jenkins, 1961), or
the prediction of an object’s unobserved features given some of its other fea-
tures and/or its category (Markman & Ross, 2003). The generation of members
of a new category consists of inferring all features for a novel category label.
Thus, we can make progress formalizing the processes involved in category
generation by extending theories of categorization to this case. This will also
serve to test the breadth of the explanatory power of categorization models to
tasks beyond typical category learning.

Previous work in category learning and generation has established that
people are highly sensitive to the structural properties of categories, such
as correlations between the features of category members and the relation
between items within the same category and those in different categories
(Regier, Kay, & Khetarpal, 2007; Rosch & Mervis, 1975; Shepard et al., 1961;
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S.M. Smith, Ward, & Finke, 1995).1 Inspired by this work, previous research
on the topic of category generation has explored a similar principle: People
tend to create new categories that have similar statistical regularities as pre-
viously learned categories (Jern & Kemp, 2013; Ward, 1994). These statistical
regularities reflect general structural patterns across old and new categories
and are not restricted to strictly quantitatively similar properties.

Although statistical regularity is an important characteristic of generating
new categories, it cannot be the only one. Taken to the extreme, the best “new”
category in terms of having the same statistical regularities to other categories
would be identical to a known category that is representative of the domain
(and thus, not new at all). Contrast from other known categories should play
a role. Indeed, scientists in other fields, such as marketing (Berger, 2016) and
sociology (Rogers, 2003), highlight the critical importance of contrast in the
creation of new ideas.

To successfully generate something novel, what is generated must be dif-
ferent from what is already known. This fundamental constraint, “being
different”, or contrasting from other categories in the relevant domain, is the
focus of our work. Intuitively, the influence of contrast may be expected in a
number of real-life scenarios involving the generation of new categories. For
instance, a college student who has been eating instant noodles for a week may
be more inclined to seek out something healthier and less carbohydrate-heavy
(e.g., a salad) compared to something similar (a different flavor of instant noo-
dles). An actor who is dissatisfied with being typecast as a villain may seek
out roles as heroes as opposed to playing other antagonistic characters. An
especially compelling example can be seen in Askin and Mauskapf (2017) who
found that new songs that were more different to their peers were generally
more popular than new songs that were similar to others. It appears that
once there is the motivation to generate something new, there is an associated
motivation to generate and observe something different.

Although implicitly assumed in some work, this constraint has been over-
looked in previous research: To our knowledge, there has not been any
systematic investigation addressing how generated categories differ from what
is already known. Although the idea of category contrast is discussed through-
out the categorization literature, and extends to a variety of other fields (e.g.,
color; Regier et al., 2007), the idea that a new category should be “different” is
vague, as there are many ways it could be different from a previously observed
category.

We examine two different definitions of how categories should differ from
one another: exemplar dissimilarity and representativeness of the alternative
category. To formalize the first technique, we build on the largely success-
ful exemplar modeling framework (Medin & Schaffer, 1978; Nosofsky, 1984,
1986). In doing so, we propose a novel exemplar model of category generation,
Producing Alike and Contrasting Knowledge using Exemplar Representations

1It is worth noting that sensitivity to feature correlations is not universal and can be dependent
on factors such as the salience of correlations and task demands (e.g., see Chin-Parker & Ross,
2002; Malt & Smith, 1984; G. Murphy, 2004).
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(PACKER), formalizing how new categories should differ from previous cat-
egories. It embodies the exemplar dissimilarity principle by incorporating a
factor that repulses members of opposite categories from one another.

The second hypothesis for how contrast might affect categorization is con-
trast as representativeness. The representativeness heuristic (Kahneman &
Tversky, 1972) states that people make judgments regarding an outcome based
on how representative it is of the evidence given in the current context. The
heuristic is a powerful theoretical construct that has been used to capture
a range of complex patterns of human judgments (Kahneman & Tversky,
1973; Tversky & Kahneman, 1974, 1983), especially those that deviate from
normative theory (as given by a straightforward application of Bayes’ rule).
For example, the coinflip sequence TTHTH is perceived to be more random
(due to it being representative of a coinflip sequence) than TTTTT (despite
both having the same probability of having been generated from a fair coin).
Although there is a healthy debate as to whether perceived randomness really
deviates from normative theory (Griffiths, Daniels, Austerweil, & Tenenbaum,
2018; Hahn & Warren, 2009; Nickerson, 2002), the representativeness heuristic
remains one of the main explanations of human judgments (Reimers, Donkin,
& Le Pelley, 2018). To formalize the hypothesis that people expect a new cat-
egory to be representative of the opposite of the current category, or contrast
as representativeness, we use the Bayesian formulation of representativeness
(Tenenbaum & Griffiths, 2001), which has been used successfully to capture
human performance in color categorization (Abbott, Griffiths, & Reiger, 2016),
image category learning (Abbott, Heller, Ghahramani, & Griffiths, 2011), and
language grammar learning (Rafferty & Griffiths, 2010). We do so by extend-
ing a Bayesian category generation model (Jern & Kemp, 2013) and find that
human category generation can also be captured as generating representative,
rather than probable, samples.

The outline of the article is as follows. First we describe previous compu-
tational formalizations of theories of category generation and empirical work
investigating them. We then present two hypotheses for how contrast might
affect categorization and formalize them in computational models. The first
is a novel exemplar model, which is designed to generate categories that sys-
tematically differ from existing categories in the domain. The second assumes
that the goal of category generation is to create representative samples of the
opposite of the observed categories. We present two experiments demonstrat-
ing strong and systematic effects of category contrast on concept generation.
Next we conduct qualitative and quantitative model-based analyses of the first
two experiments at the group and individual levels. The results of the anal-
yses are equivocal. Due to this, we develop and conduct a third experiment
that distinguishes the two computational formulations of contrast. The third
experiment found the exemplar-based version of contrast to capture human
performance better. We conclude with a discussion of the implications of our
results for categorization and directions for future work.
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3 Prior work

Much of what we know about concept generation and contrast comes from the
foundational literature on creative cognition. In a series of reports, Ward and
colleagues (Marsh, Ward, & Landau, 1999; S.M. Smith, Ward, & Schumacher,
1993; Ward, 1994, 1995; Ward, Patterson, Sifonis, Dodds, & Saunders, 2002)
established that category generation is highly constrained by prior knowledge:
Generated categories tend to consist of features observed in known categories,
and they tend to exhibit the distributional properties found in known cate-
gories. In a seminal study, Ward (1994) asked participants to generate new
species of alien animals by drawing and describing members of the species.
People tended to generate species with the same features as on Earth (e.g.,
eyes, legs, wings), and possessing the same feature correlations as on Earth
(e.g., feathers co-occur with wings). Likewise, aliens drawn from the same
species tended to share more features with one another compared to members
of opposite species.

The broader set of observations made by Ward and colleagues provide a
great deal of insight into the role of prior knowledge in constraining cate-
gory generation. Much of the work from this area (e.g., Marsh et al., 1999;
S.M. Smith et al., 1993) focuses on how information provided to participants
(such as an example of a species generated by other participants) can dras-
tically diminish the difference of a new category from pre-existing categories.
Theoretical accounts of these effects have primarily been grounded within the
categorization literature. For example, the predominant “Path of Least Resis-
tance” account (see Ward, 1994, 1995; Ward et al., 2002) proposes that, when
generating a new species of animal, people retrieve from memory a known
subcategory of animals (e.g., bird, dog, horse), and simply change some of the
features to make something new. People are thought to change only features
that are not characteristic of the retrieved category (e.g., if bird was retrieved,
the presence of wings would not change, but color might). This theory incorpo-
rates elements of the highly influential basic-level categories framework (Rosch,
1975; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976), as well as the
exemplar view (Brooks, 1978; Medin & Schaffer, 1978). While this work has
been incredibly useful in providing a conceptual sketch of generation theories,
its qualitative nature and the hand-drawn responses used in the experiments
paradigms precludes the development of formal approaches that can be used to
test them in a fine-grained manner. One other relevant study of note is Lake,
Salakhutdinov, and Tenenbaum (2015). In one part of their experiments, they
had participants generate novel alphabets. While their work is fascinating, the
model is domain-specific (representing orthography using a grammar over the
parameters of Bézier curves) and the results are difficult to generalize beyond
that domain.

Jern and Kemp (2013) showed that concept generation could be stud-
ied in a more controlled manner through the well-developed methods of an
artificial categorization paradigm (see Kurtz, 2015, for a review). In Exper-
iments 3 and 4 of their article, participants were exposed to members of
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experimenter-defined categories of ”crystals” varying in size, hue, and sat-
uration. Following a training phase during which the experimenter-defined
categories were learned, participants were asked to generate novel categories
of crystals. In a finding mirroring Ward (1994), Jern and Kemp (2013) found
that participants generated categories with the same distributional properties
as the experimenter-defined categories. For example, after learning categories
with a positive correlation between the size and saturation features (larger
sized crystals were more saturated), participants generated novel categories
with the same positive correlation. By replicating Ward (1994), they demon-
strated that category generation can be studied in a well-known and highly
controlled experimental paradigm.

The authors evaluated the predictions of several formal models on their
data. Most notably, they showed that a hierarchical Bayesian model provided
the strongest account of their results. Their model views observed examples as
samples from an underlying category distribution, describing the location of
the category in the space, as well as how it varies along each feature. In turn,
each category is viewed as a sample from an underlying domain distribution,
specifying distributional commonalities among the observed categories. Gen-
erated categories are thought to stem from the same domain distribution as
observed categories, thus the distributional properties of observed categories
will be preserved within the generated category.

Jern and Kemp (2013) additionally tested a “copy-and-tweak” model that
broadly resembles the earlier “Path of Least Resistance” account. The core pro-
posal is that participants generate new items by copying stored examples from
memory and tweaking them to generate something new. The copy-and-tweak
model differs from the Path of Least Resistance account in that it notably
omits the hierarchical organization of categories, as well as selectivity to which
features are changed (both of which are factors in the Path of Least Resistance
account; Ward et al., 2002). Instead, their copy-and-tweak model corresponds
to a direct exemplar-similarity approach (e.g., Nosofsky, 1984, 1986), gener-
ating new items according to their similarity to known members of the target
category. The copy-and-tweak model provided a poor account of the results of
Jern and Kemp (2013).

It is worth pointing out that the early observation of regularities in distri-
butional properties across categories is not confined to the work of Ward and
colleagues. Most notably, Thomas (1998) trained participants to classify cir-
cles of different sizes, each with a radial line of varying orientation, into two
categories. During a surprise prediction phase, participants were asked to gen-
erate a value for a missing feature for a certain category exemplar given a value
on the other feature. Their results revealed that exemplars tended to share
the same feature correlations as exemplars from previously learned categories.
Interestingly, this effect was not consistently observed when the given values
of a feature fell outside the range of learned values for that particular category.
For instance, if the learned Category A exemplars were generally 8 cm to 10
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cm in radius and negatively correlated with the angle of the radial line, par-
ticipants generally produced radial line orientations that were also negatively
correlated with the exemplar size when the given size was between 8 cm and
10 cm. However, when the given size fell outside that range for that category
(e.g., 14 cm for a Category A exemplar), some participants consistently pro-
duced radial line orientations that were not negatively correlated with the size
and that also placed the exemplars in a significantly different location in the
feature space. These results suggest that when tasked to produce exemplars
that fall outside what was previously learned, people show some tendency to
generate exemplars that are different (both distributionally and spatially) to
what was learned. We explore this idea of contrast more deeply in the following
section.

4 And Now for Something (Completely)
Different: The Role of Contrast

Although people are capable of creating new categories, it is not entirely clear
whether (and if so, how) new concepts are systematically made different from
what is already known. The hierarchical Bayesian model developed by Jern
and Kemp (2013) assumes that differences between observed and generated
categories are only due to random variation. The model assumes that gener-
ated categories are sampled from the same underlying domain distribution as
observed categories, and will thus share a common distributional structure.
The model does not make predictions about the location of the category within
the domain (the perceptual instantiation of category members). Under a strict
interpretation of their model, given knowledge of a single category within the
domain, the most probable new category to be generated is located in exactly
the same location and possesses an identical distributional structure. This is
not an issue with their model specifically, but using a broader class of standard
hierarchical Bayesian models without any additional features (e.g., Griffiths,
Sanborn, Canini, & Navarro, 2008; Kemp, Perfors, & Tenenbaum, 2007). Many
of these models assume that at some point of the latent generative process
the same underlying distribution generates all of the categories and thus, any
differences between categories are due to noise and should not be systematic.
If the goal of creating a new category given others in a domain is generating
from the posterior predictive distribution then the best a standard hierarchi-
cal Bayesian model without a notion of contrast built into the model can do
at capturing contrast is to assume that the new category is placed uniformly
at random over feature space. But, this defeats the purpose of a hierarchy as
it is ignored when determining a new category location!2 Note that this does
not mean location information and contrast cannot be captured using hierar-
chical Bayesian models (e.g., see Sanborn, Heller, Austerweil, & Chater, 2021).

2It is plausible that some hierarchical Bayesian models could be created that generate categories
different from each other. However, this model would not be a standard application or extension
of most pre-existing hierarchical Bayesian models. The generative process would need to include
a component that presumes contrast, which is precisely the factor of study in this article.



Springer Nature 2021 LATEX template

10 RUNNING HEAD: Similarity, Contrast, and Representativeness in Categorization

In fact, a model instantiating contrast as representativeness is a hierarchical
Bayesian model. But, it requires an additional factor, which in our case is
having a different goal than predicting exemplars from a new category.

The copy-and-tweak model tested by Jern and Kemp (2013) also claims
little about how generated categories should contrast with what is already
known. In their simulations, the model was only tested on generation after
the learner had been exposed to members of the target category, and so the
model’s ability to generate a new category from scratch was not evaluated.
However, the model’s generation is based exclusively on similarity to known
members of the target category; when there are no members of the target
category, generation is presumably random.

To our knowledge, no prior literature has yet explicitly discussed any
empirical effects of contrast in category generation. However, some evidence of
contrast can be seen in the data from Experiment 3 of Jern and Kemp (2013).
We leave a detailed analysis of these data to the supplemental materials.

4.1 Contrast as exemplar dissimilarity: The PACKER
Model

As noted above, the constraint that new concepts should differ from what
is already known has been largely overlooked in previous work. This is no
doubt in part due to the vague definition of what it means for a concept to
be “different”: A generated category may be different from what is already
known in any number of respects. Towards providing a more precise definition
of the role of contrast in generation, we formalized contrast in a novel exemplar
model, PACKER (Producing Alike and Contrasting Knowledge using Exemplar
Representations). PACKER explains category generation as a balance between
two fundamental constraints: The exemplars of the category to be generated
should not be similar to known categories, and exemplars within each category
should be similar to one another. These ideas are implemented within the
well-studied exemplar framework – the PACKER model is an extension of
the influential Generalized Context Model of categorization (GCM; Nosofsky,
1984, 1986).

Although, as an exemplar model, one of PACKER’s proposals is people
represent categories in terms of a collection of stored exemplars, we did not
pick it assuming it is the correct model of human categorization. The choice
to develop PACKER within an exemplar framework reflects the facts that
exemplar models have been thoroughly evaluated, are strongly theoretically
motivated, and dominate much of the theoretical and empirical work in cate-
gorization. The focus of our work with PACKER concerns how contrast may
be captured through the dual constraints of within- and between-class simi-
larity; it is not difficult to imagine how such constraints may be instantiated
using alternative frameworks (e.g., Kurtz, 2007; Love, Medin, & Gureckis,
2004; D.J. Smith & Minda, 2000; for a review of categorization models, see
Pothos & Wills, 2011).



Springer Nature 2021 LATEX template

RUNNING HEAD: Similarity, Contrast, and Representativeness in Categorization 11

Both PACKER and the GCM simulate categorization under the assump-
tion that learners represent categories as a collection of exemplars, correspond-
ing to the labeled stimuli they have observed. The exemplars are encoded
within a k-dimensional psychological space, and model performance is based
on the amount of similarity between the item to be categorized and the stored
exemplars. Similarity between two examples, s (x, y), is computed as an inverse
exponential function of distance (following Attneave, 1950; Shepard, 1957,
1987):

s (x, y) = exp

−α
[∑

k

wk|xk − yk|r
]1/r

 (1)

where wk is the attention weighting of dimension k (wk ≥ 0 and
∑

k wk = 1),
accounting for the relative importance of each dimension in similarity calcu-
lations, and α (α > 0) is a specificity parameter controlling the spread of
exemplar generalization. For simplicity, in our simulations attention will be dis-
tributed across each dimension uniformly (unless otherwise noted). The value
of r depends on the nature of the experimental conditions being simulated:
r = 1 is appropriate for separable dimensions, whereas r = 2 is appropriate
for integral dimensions (e.g., Garner, 1974; Shepard, 1964). In our simulations,
we set r = 1 due to the separable nature of the stimulus dimensions used in
our experiments (see Figure 3).

PACKER (as well as its name) was in part inspired by earlier work from
the categorization literature (Hidaka & Smith, 2011; Stewart & Brown, 2005).
Hidaka and Smith (2011) argued that natural categories “pack” the values
of features such that different categories fill the domain space with distance
between one another, while keeping items within the same category close
together. Inspired by this idea, PACKER proposes that generation is con-
strained by both similarity to members of the target category (the category in
which a stimulus is being generated) as well as similarity to members of other
categories: the most desirable generation candidates are similar to members of
the target category and not similar to members of contrast categories. This is
achieved by aggregating similarity across known exemplars differently accord-
ing to class membership. The aggregated similarity a(y,X ) between generation
candidate y and stored exemplars X is given by:

a(y,X ) =
∑
x∈X

f(x)s(y, x) (2)

where f(x) is a function specifying each exemplar’s contribution to generation.
A negative value for f(x) produces a ‘repelling’ effect (items are less likely to
be generated nearby x), and a positive value produces an ‘attracting’ effect
(items are more likely to be generated nearby x). When f(x) = 0, the exemplar
does not contribute to generation.

PACKER sets f(x) depending on exemplar x’s category membership:
f(x) = θt if x is a member of the target category, and f(x) = −θc if x is
a member of a contrast category. θt and θc are free parameters (0 ≤ θt, θc)
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Fig. 1 The effect of weights on PACKER generation of a category ‘B’ example, following
exposure to one member of category ‘A’ and one member of category ‘B’. Predictions are
shown for three different parameterizations (differing in values of θt and θc): (a) Predic-
tions based on contrast similarity only. (b) Predictions based on target similarity only. (c)
Predictions with both constraints considered.

controlling the trade-off between within- and between-category similarity. For
example, when θt = θc = 0.5, f(x) = 0.5 for members of the target category
and f(x) = −0.5 for members of other categories; thus, the model is likely
to generate items that are similar to members of the target category but are
not similar to members of other categories. In this way, θt > 0 with θc = 0
produces exclusive consideration of target-category members, and θc > 0 with
θt = 0 produces exclusive consideration of contrast-category members. The
combination of θt and θc parameters thus specifies a wide breadth of possi-
ble approaches; by fitting it to a dataset, one can describe the relative roles
of between-category contrast and within-category similarity in generation.
See Figure 1 for an illustration of how these parameters control the relative
influence of within-category similarity and contrast to other categories when
generating a new exemplar.3

The probability that a candidate y will be generated is evaluated using
an Exponentiated Luce (1977) choice rule. Candidates with greater values of
a(y, x) are more likely to be generated than candidates with smaller values:

p(y | x) =
exp {a (y, x)}∑
i exp {a (yi, x)}

(3)

Note, because θt and θc are unconstrained, their size plays the role of the
response determinism parameter for the exponentiated Luce choice rule.

4.1.1 Relation Between PACKER and Copy-And-Tweak

It is worth noting that PACKER is only one possible exemplar-based account
of category generation within our proposed framework. That is, PACKER
places specific constraints on the possible values of f(x), but other exemplar-
based category generation models with drastically different behavior can be
formalized in this framework by imposing alternative constraints. For example,
PACKER is formally equivalent to the copy-and-tweak model proposed by Jern

3One prediction made by PACKER is that as the number of similar examples in the target
category increases, its repulsive strength on the contrasting category should also increase. We
thank an anonymous reviewer for pointing out this prediction.
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and Kemp (2013) when θc = 0 and θt > 0 (in fact, it becomes a continuous-
dimension adaptation of the original model). Likewise, when θt = 0 and θc > 0,
PACKER can represent a contrast-only generation mode, relying exclusively on
contrast when generating new categories. When f(x) < 0 for all x (regardless of
category membership), a “pure-packing” approach is yielded, generating items
in unoccupied areas of the domain. Thus, the proposed framework may be
used to describe a wide variety of qualitatively distinct generation strategies.

By formalizing a model family where PACKER and copy-and-tweak are
different parameterizations of models within the same framework, the compar-
ison between PACKER and copy-and-tweak provides a test of the explanatory
value of the contrast mechanism based on exemplar dissimilarity: The account
provided by copy-and-tweak will only equal that of PACKER if the contrast
mechanism does not offer an advantage (i.e., if θc > 0 does not significantly
improves model fits). Note that the purpose of the article is to explore and
formally analyze the role of contrast in categorization and thus, we leave
extending PACKER to incorporate distributional factors for future work.

4.2 Contrast as representativeness: An extension to Jern
and Kemp (2013)

An alternate conceptualization of category contrast is the idea of representa-
tiveness – exemplars are generated such that they resemble the target category
and are thus more distinct from and less similar to other categories. The gen-
eral idea of representativeness is not new in categorization. For instance, the
literature on the graded structure of categories explores how some exemplars
are better exemplars of their categories (Barsalou, 1985; Palmeri & Nosofsky,
2001).

In this article, we adapt the specific formalization of representativeness
given by Tenenbaum and Griffiths (2001) for generating new categories.
According to their formulation, the representativeness of exemplar y as a mem-
ber of category j is its (log) likelihood of being generated from j relative to
y having been generated by any other category. This captures the intuition
that representative examples of a category are likely (increases with p(y | j))
as well as unlikely under other categories (decreases with p(y |6 j)). For exam-
ple, TTTTTT and THTTHH are both equally likely to be generated by a fair
coin, but THTTHH is more representative of the fair coin. This is because
TTTTTT can also be generated by two-sided coins and thus is penalized when
calculating its representativeness. Continuing with the formal definition of rep-
resentativeness, let J denote the set of all categories and J c = J \ j be the
set of all categories other than category j. Then, the representativeness of y
as a member of j can be written as:

R(x, j) = log
p(x | j)

1− p(x | J c)
= log

p(x | j)∑
j′∈J c p(x | j′)p(j′)

. (4)
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In Equation 4, p(j′) is the prior probability distribution over possible categories
excluding category j (i.e., we effectively set p(j) to 0 and then renormalize
the priors). Note that when there are only two hypotheses (e.g. two cate-
gories) involved in the domain, this prior takes the value of 1 for the alternate
hypothesis as there is always only one alternative hypothesis.

The Bayesian formalization of representativeness makes it straightforward
to extend the existing hierarchical Bayesian model of category generation
exemplars are sampled from a given category distribution (j in Equation 4).
The distribution for category j is a multivariate normal parameterized by a
location vector µj and covariance matrix Σj . The parameters µj and Σj are
assumed to be samples from a prior normal-inverse-Wishart (NIW) distribu-
tion parameterized by µ0,Σ0, κ, ν. The NIW was chosen as a prior due to its
mathematical conveience as a conjugate prior. Mathematically,

µj ,Σj | µ0,Σ0, κ, ν ∼ NIW(µ0,Σ0, κ, ν) (5)

y | µj ,Σj ∼ N (µj ,Σj) (6)

In our simulations, we set the prior mean µ0 to the center of the feature
space and the prior variance to be isotropic (Σ0 = λI where λ > 0 is a free
parameter and I is a d-by-d identity matrix with d representing the number
of dimensions or features in the domain). The κ and ν parameters are freely
estimated within the constraints κ > 0 and ν > d− 1.

With the assumption of the NIW prior, the expected location vector µj
given exemplars observed from category j is:

µk =
κµ0 + nj x̄j
κ+ nj

(7)

where nj is the number of observed exemplars in category j and x̄j is the
observed category mean. Note that if there are no observed exemplars in the
target category (i.e., if the model is generating a completely novel category),
Equation 7 simplifies to µj = µ0.

The NIW prior also allows us to infer the category covariance matrix Σj
by computing the following:

Σj = [νΣD + Cj +
κnj
κ+ nj

(x̄j − µj)(x̄j − µj)T ](ν + nj)
−1 (8)

where Cj is the observed category covariance and ΣD is the domain covariance
matrix from which Σj samples are obtained. We can infer ΣD from the observed
category covariances C and the prior covariance Σ0. Specifically,

ΣD = Σ0 +
∑
j

Cj (9)
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At this point, both the representativeness model and the hierarchical
Bayesian model from Jern and Kemp (2013) are largely identical. However,
the models diverge in their computation of exemplar generation probabilities.
While the original hierarchical Bayesian model produces novel exemplars with
probabilities proportional to the multivariate normal likelihood p(y | j), the
representativeness model generates new exemplars according to their represen-
tativeness R(y, j) as formulated in Equation 4. In practice, the probability of
generating a particular candidate y is obtained using an Exponentiated choice
rule (Luce, 1977):

p(y) =
exp(θ ·R(y, j))∑

j′∈J c exp(θ ·R(y, j′))
. (10)

where θ is a freely estimated response determinism parameter (constrained
such that θ ≥ 0).

Here, we implement the representativeness mechanism at the level of dis-
tributions over category exemplars. However, with a hierarchical model, it is
also possible to apply the representativeness mechanism at other levels, such
as the level of the distribution of category statistics (i.e., their means and
covariances). For simplicity, we focus only on one type of representativeness
model (i.e., where the mechanism is implemented at the level of distribu-
tion over category exemplars) and formalism (for a related formalization of
representativeness, see Bordalo, Coffmann, Gennaioli, Schwerter, & Shleifer,
2021).

Despite both the original hierarchical Bayesian model and our representa-
tiveness model sharing identical hierarchical structures, their distinct response
processes can yield very different exemplars. Specifically, the hierarchical
Bayesian model emphasizes the generation of exemplars that maintain distri-
butional commonalities across categories. In contrast, the representativeness
model focuses on the generation of exemplars that are representative of the
underlying distribution for a target category. Generally, with the assumption
of unimodal underlying distributions, this mechanism of representativeness
results in the generation of novel exemplars that are less similar to exemplars
from the known category. This occurs because the representativeness of novel
exemplars tend to be highest where the probability density of the known cate-
gory’s underlying distribution is the lowest. We see this illustrated in Figure 2,
where the representativeness model displays a strong preference for generating
exemplars from target category ’B’ that are further away from the contrast
category ’A’. Exceptions to this pattern can occur (i.e., the generation of novel
exemplars similar to known category exemplars) – we explore this in more
detail in Section 8 where we highlight an important condition demonstrat-
ing how PACKER and the representativeness model can make qualitatively
different predictions.
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Fig. 2 Generation of a category ‘B’ example, following exposure to one member of category
‘A’ and one member of category ‘B’. Predictions are shown for (a) the original hierarchical
Bayesian model and (b) the representativeness model.

5 Experiment 1

To begin our investigation, we examined category generation in a well-
understood domain using a few disparate category types. We used an artificial
stimulus design: A two dimensional domain of squares, varying in color and
size (see Figure 3a). These dimensions have been used in numerous classifica-
tion learning studies (e.g., Conaway & Kurtz, 2016a, 2016b; Nosofsky, Gluck,
Palmeri, & McKinley, 1994; Shepard et al., 1961). Unlike those used in the Jern
and Kemp (2013) experiments, distance on these physical dimensions aligns
more directly with perceptual similarity, allowing us to evaluate the role of
contrast in categorization more precisely. It also enables more straightforward
comparisons to prior work. We tested the effects of category contrast after
learning one category from a set of qualitatively distinct category structures,
as shown in Figure 3.

Figures 3b-d show the values of exemplar dimensions belonging to
the experimenter-defined categories (‘A’, or ‘Alpha’) that participants were
assigned to learn about prior to generating a new category. Each participant
learned one of the category types during training. In the ‘Cluster’ type, cate-
gory A is a tight cluster of examples in the space. Perceptually instantiated,
the members of category A might, for example, be large and dark in color. In
the ‘Row’ type, category A has a row pattern across the space, varying along
one feature but not the other. Thus, its members might all be dark in color
but would vary in size. Finally, in the ‘XOR’ type, the experimenter-defined
category consists of two clusters separated in opposite corners of the space,
conforming to the exclusive-or logical structure (e.g., members are small and
dark or large and light).

It should be noted that in our experiments the assignment of the percep-
tual to conceptual dimensions (e.g., X → Size, Y → Color) and the direction
of variation along each dimension (e.g., dark → light or light → dark) were
counterbalanced across participants. The category types in Figure 3 are plotted
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Fig. 3 Stimulus domain and category types tested in Experiment 1. Below each condition,
an example of Category A shown to a participant is provided. Stimuli are not drawn to
scale. Dimension and direction assignment (e.g., large to small or small to large) for color
and size were counterbalanced over participants.

in conceptual space, rather than perceptual space. Thus, while the conceptual
organization of the category types remains constant, each category type may
have a different physical instantiation according to the counterbalance assign-
ment. For example, the Cluster type may be large and dark in color, or it
may be small and light in color, depending on the assignment and direction
of the dimensions. For this reason, below we will discuss generation within a
conceptual space, rather than a physically instantiated one.

After learning about an experimenter-defined category, participants are
asked to generate examples of a new category. Within this paradigm, an effect
of category contrast would be realized if participants prefer to generate items
in locations that are distant (i.e., perceptually dissimilar) from members of
category A. However, generation is left unconstrained. Critically, participants
were not asked to generate something different in the prompt. For example,
participants assigned to the Cluster condition may generate a tightly clustered
category in the corner opposite of the experimenter-defined category. Alter-
natively, they may generate a tightly clustered category directly overlapping
with the experimenter-defined category. Further, they may even generate an
entirely different type of category (e.g., a row category).

Our experimental results also provide a converging test that generated cat-
egories tend to share distributional properties with known categories in the
domain (Jern & Kemp, 2013; Ward, 1994). From these results, we can pre-
dict that, in each condition, participants should generate categories that are
distributionally similar to the experimenter-defined category: In the Cluster
condition, generated categories should be tightly clustered. In the Row condi-
tion, generated categories should vary more along the dimension assigned to
X-axis than the one assigned to the Y-axis. In the XOR condition, generated
categories should be widely distributed across both dimensions, and the exem-
plar dimensions should reflect the same correlation as the observed exemplars.
For example, given the exemplars displayed in Figure 3, small generated exem-
plars should be darker (and larger ones lighter). As exemplars in the XOR
condition have a positive correlation from the perspective of conceptual space,
we refer to this distributional property as a ”positive correlation”.
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Interestingly, the XOR condition also offers a dissociation between the roles
of category contrast and the emulation of distributional structure: widely-
distributed, positively-correlated categories would need to lie along the positive
diagonal of the space (that is the only place they “fit”), which is already par-
tially occupied by the experimenter-defined category. Thus, if contrast plays a
role, exemplars in the generated categories of participants in the XOR condi-
tion may not be positively correlated – they may not be correlated, or perhaps
even be negatively correlated. In this case, contrast and statistical regulari-
ties would interact, which would be inconsistent with prevailing theories of
category generation (Jern & Kemp, 2013).

5.1 Participants and Materials

183 participants were recruited from Amazon Mechanical Turk. Participants
were required to have a HIT approval rate of at least 95% and be located in
the USA. Participants could only take the experiment once. Each participant
was randomly assigned to one condition: 64 participants were assigned to the
Cluster condition, 61 were assigned to the Row condition, and 58 were assigned
to the XOR condition (sample sizes differ due to random assignment). The
same participant recruitment specifications were used for all experiments in
this article. Due to experimenter error, we do not have participant demographic
data for any of the experiments in the article.

Stimuli were squares varying in color (grayscale 9.8%–90.2%) and side
length (3.0–5.8cm), see Figure 3. Each dimension was discretized into nine
equal steps. The assignment of perceptual features (color, size) to axes of the
conceptual space (X, Y) and the direction of variation along each axis (e.g.,
dark → light or light→ dark) were counterbalanced across participants.

5.2 Procedure

As noted in the introduction of this paper, the task of generating members
of a new category is well situated as a task in the categorization literature:
Whereas classification consists of predicting an object’s category label on the
basis of its features, inference consists of predicting an unobserved feature,
given a set of observed features and a category label. Generation thus consists
of predicting all features of an object, given a novel category label. We designed
our generation task as an extension of the traditional artificial classification
learning paradigm. The task differs from traditional work in creative cognition
primarily through the use of an artificial domain, which enables the applica-
tion of computational models. The use of an artificial domain also requires the
addition of a training phase, during which participants learn about the cat-
egories in the domain. As a result, unlike most previous studies (e.g., Ward,
1994), participants in our studies have no experience with the domain before
the start of the experiment, and the experimenter-defined categories are not
hierarchically structured (as are many natural categories).
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Participants began the experiment with a short training phase (3 blocks
of 4 trials), where they observed exemplars belonging to the ‘Alpha’ category.
Participants were instructed to learn as much as they can about the ‘Alpha’
category, and that they would answer a series of test questions afterwards. On
each trial, a single ‘Alpha’ category exemplar was presented, and participants
were given as much time as they desired to observe it before moving on to the
next trial. Each block consisted of a single presentation of each of the members
of the ‘Alpha’ category, in a random order. Participants were shown the range
of possible colors and sizes prior to training.

Following the training phase, participants were asked to generate four
examples belonging to another category called ‘Beta’. As in Jern and Kemp
(2013), generation was completed using a sliding-scale interface. Two scales
controlled the values of the two dimensions (color, size) for the generated
example. An on-screen preview of the example updated whenever one of
the features was changed. Participants could generate any example along an
evenly-spaced 9x9 grid (including members of the ‘Alpha’ category), except
for any previously generated ‘Beta’ exemplars. Neither the members of the
‘Alpha’ category nor the previously generated ‘Beta’ examples were visible
during generation. Prior to beginning the generation phase, participants read
the following instructions4:

As it turns out, there is another category of geometric figures called “Beta”.
Instead of showing you examples of the Beta category, we would like to know what
you think is likely to be in the Beta category.

You will now be given the chance to create examples of any size or color in
order to show what you expect about the Beta category. You will be asked to
produce 4 Beta examples - they can be quite similar or quite different to each
other, depending on what you think makes the most sense for the category.

Each example needs to be unique, but the computer will let you know if you
accidentally create a repeat.

5.3 Results

We observed a substantial degree of individual differences in our data. In Figure
4 we have plotted sample data from several participants, from which it is
evident that different participants generated qualitatively different category
structures. In this section we will focus on analyzing the data in aggregate,
but in later sections we will explore how these individual differences can be
explained.

To evaluate the role of contrast, we computed the number of times each
stimulus was generated, as a function of its average city-block distance from
members of the experimenter-defined “Alpha” category. These data, shown in
Figure 5, reveal a clear pattern: Examples that are more distant from mem-
bers of the experimenter-defined categories are more likely to be generated
into a new category. This supports the notion that contrast is a fundamental

4We chose this wording for eliciting a new category from participants to be consistent with prior
work by Jern and Kemp (2013). People interpret ”Beta” and ”NOT Alpha” differently (Liew &
Austerweil, 2019). Exploring these subtle differences is a fascinating direction for future research.
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Fig. 4 Sample categories generated by participants in Experiment 1. Representative
samples from common generation profiles are shown.

constraint on how categories are related to one another and that statistical
regularity alone is insufficient.

Figure 5 also depicts, for each participant, the average distance of members
within the generated category (within-category distance) against the average
distance between members of the generated and experimenter-defined cate-
gory (between-category distance). The narrow distribution of between-category
distances in the XOR condition reflects the widely distributed nature of the
experimenter-defined category, reducing the possible distances to members of
the participant-generated category. These data reveal a systematic pattern:
The majority of participants generated categories with greater between-
category distance than within-category distance. That is, members of the
generated category tended to be more similar to one another than to members
of the experimenter-defined category. To evaluate this claim quantitatively, we
conducted t-tests comparing the amount of within- and between- class distance
in each condition. All conditions possessed greater between-category distance:
Cluster, t(63) = 11.43, p ≈ 5.18×10−17; Row, t(60) = 13.16, p ≈ 2.48×10−19;
and XOR, t(57) = 3.64, p ≈ 5.81×10−4. These results provide further evidence
of an effect of category contrast: Participants prefer to generate categories
that are dissimilar to the learned category but maintain some level of internal
cohesion.

A secondary goal of this experiment was to examine whether we repli-
cate the classic result that generated categories often possess the same
distributional properties as previously-known categories. Given the increased
importance of replication within psychology (Zwaan, Etz, Lucas, & Donnel-
lan, 2018), it is important as it serves as a conceptual replication of Jern
and Kemp (2013). For analyses, distributional structure refers to variation on
each individual dimension as well as the correlation between dimensions. For
each generated category, we computed the category range along each axis (X,
Y), as well as the correlation between features. These data, shown in Figure
6, reveal broad individual differences: Within each condition, some partici-
pants generated categories spanning the entire X- and Y- axis whereas other
participants categories that spanned very little along each. Likewise, in each
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Fig. 5 Experiment 1 results. Left: Frequency of generation as a function of distance from
members of the experimenter-defined category. Note that there are fewer possible distances
for XOR due to the experimenter-defined category providing exemplars from the opposite
extremes of the space (and participants needing to generate four unique exemplars). Right:
Scatter plot of within-category versus between-category distance in each of the participant-
generated categories.

condition participants generated categories possessing strongly positive, neu-
tral, and strongly negative correlations between the dimensions. Comparing
the distributional statistics between conditions yields a broad yet, as we will
see, misleading replication of the classic effect.

With respect to ranges along each axis (X, Y), the generated categories
from each condition tend to reflect the ranges of the experimenter-defined
categories. The categories generated in the Cluster condition were less widely
distributed along the X-axis compared to Row, t(123) = 5.61, p ≈ 1.27×10−7,
and XOR, t(120) = 2.68, p ≈ .0083. Categories generated in the XOR condition
were also less widely distributed along the X-axis compared to Row, t(117) =
2.56, p = .011. This latter effect was not expected because the experimenter-
defined categories for XOR and Row had similar X-ranges. However, the key
finding is that categories from the Cluster condition tended to be more tightly
distributed along the X-axis.

Likewise, categories generated in the Row condition had less Y-axis range
compared to Cluster, t(123) = 4.57, p ≈ 1.16 × 10−5 and XOR, t(117) =
9.26, p ≈ 1.2 × 10−15, and categories from the Cluster condition had less Y-
axis range compared to XOR, t(120) = 3.95, p ≈ .00013. As expected, the
correlations in the Cluster and Row conditions were not systematically positive
or negative (ps > .1). However, the generated categories in the XOR condition
tended to possess negatively correlated dimensions, t(57) = 2.04, p = .046.
This finding is notable, as it is the opposite of what would be expected based
on previous literature (Jern & Kemp, 2013), assuming learners are emulating
the distributional structure of the experimenter-defined class (which possesses
perfectly positively correlated features).

We believe that the failure to replicate the emulation of dimension corre-
lation is because participants in Jern and Kemp (2013) could differentiate the
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Fig. 6 Violin-plots of the distributional statistics from the categories generated in
Experiment 1.

generated category on a third dimension (hue) to maintain the statistical reg-
ularities on the other two dimensions. In addition, in our XOR condition the
stimuli were constrained to the corners of the feature space, whereas in the
positive diagonal condition of Jern and Kemp (2013) the stimuli had no such
constraint. Although the correlation in the XOR condition is significantly neg-
ative, it is clear from the box-plot in Figure 6 that it would be inappropriate to
make a strong conclusion (e.g., the median is close to zero). However, we can
conclude with confidence that there are situations where people do not emulate
the distributional structure of the given category. This indicates that there is
more to category generation than the emulation of distributional structure of
other categories in the domain. Further, as we will discuss in more detail in the
model-based analysis section, this is expected by our proposal that contrast is
a fundamental principle in categorization.

5.4 Discussion

In Experiment 1 we evaluated the influence of category contrast on category
generation, given qualitatively different types of categories. We found strong
evidence for effects of category contrast in each condition: Participants were
more likely to generate stimuli that are more distant from (i.e., less similar
to) members of a previously-learned category, and members of participant-
generated categories tended to be more similar to one another than to members
of previously-learned categories. We also partially replicated the classic find-
ing that the distributional structure of generated categories reflects that of
previously learned categories (Jern & Kemp, 2013; Ward, 1994): Members
of generated categories were more widely distributed along dimensions which
were widely distributed in the experimenter-defined category.

Notably, however, we also found that participants who learned an XOR
category (composed of exemplars following a positive diagonal, see Figure 3)
tended to generate items according to a negative feature correlation – the
opposite of what was present in the previously learned category. While this
may be difficult to account for under existing theoretical approaches (which
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Fig. 7 Category types tested in Experiment 2 plotted in conceptual space.

assume generated categories follow the same distributional structure as known
categories), it can be concisely explained from a category contrast perspec-
tive. Specifically, within the XOR condition, individuals who seek to generate
a category that is perceptually distinct from what is already known are left
with only the upper-left and bottom-right quadrants of the space, as members
of the previously-learned XOR category lie in the bottom-left and top-right.
If examples are generated into both of the available quadrants, the gener-
ated category will possess a strongly negative correlation, opposing that of the
experimenter-defined class.

Thus, the core results of Experiment 1 indicate that generated categories
can systematically differ from what we would expect based on prior work.
The negative (or null) correlations observed in the XOR condition suggests an
interesting interaction between contrast with a given category and emulation
of statistical properties. That is, the constraints on generation imposed by
category contrast may not simply influence the location of generated categories,
but also their distributional structure. In Experiment 2, we test this claim
more systematically.

6 Experiment 2

To test whether category contrast influences the distributional structure of
generated categories, we sought to identify conditions in which differences in
the distributional structure of generated categories cannot be explained by the
distributional structure of the experimenter-defined category. We created two
new category types (depicted in Figure 7) that possess identical distributional
structures (both are tight clusters of examples with no correlation between fea-
tures), as they only differ in their Y-axis position: the ‘Bottom’ category lies
near the bottom of the space, and the ‘Middle’ category lies in the center. The
distributional equality of these conditions is key to the design of the experi-
ment: If the distributional structure of previously learned categories were the
only influence on the generated categories, we should observe no difference in
the categories participants generate between these two conditions. Will partic-
ipants distribute their generated category differently between conditions due
to the differences in the available empty feature space for generating a new
category?
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Fig. 8 Sample categories generated in Experiment 2.

If category contrast influences the distributional structure of the categories
people generate, then we should observe different types of categories accord-
ing to the shape of the space that is unoccupied by members of previously
learned categories. The difference in the Y-axis position between the Bottom
and Middle conditions produces a considerable change to the shape of the
unoccupied space. Participants assigned to learn the Bottom category should
be less likely to generate exemplars into the lower regions of the feature space
(as these areas possess greater similarity to members of the Bottom category),
preferring instead to distribute exemplars across the upper region of the space.
This constraint is lifted in the Middle condition, as the Middle category exem-
plars are equidistant to the upper and lower regions of the space. Accordingly,
participants should be more likely to utilize both of these areas. Thus, if cat-
egory contrast influences the distributional structure of generated categories,
we should observe more participants in the Middle condition that generate
examples above and below the experimenter-defined category.

6.1 Participants, Materials, and Procedure

122 participants were recruited from Amazon Mechanical Turk. 61 participants
were randomly assigned to the Middle and Bottom conditions each. The stim-
ulus space and procedure were exactly as in Experiment 1. Participants first
completed a short training phase, followed by the generation phase. The only
difference from Experiment 1 was the category types given to participants.

6.2 Results

As in Experiment 1, we observed broad differences in the generation approach
taken by different participants. To characterize the nature of these differences,
Figure 8 depicts sample categories generated by participants. The data from
each condition are organized into four columns based on commonly observed
patterns of generation: a ‘Cluster’ type of tightly-clustered examples, ‘Row’
and ‘Column’ types of exemplars widely distributed along the one axis but
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Fig. 9 Experiment 2 results. Left: Frequency of generation as a function of distance from
members of the experimenter-defined category. Right: Scatter plot of within-category versus
between-category distance in each of the participant-generated categories.

narrowly along the other, and a ‘Corners’ type, wherein participants placed
exemplars in disparate corners of the space. As before, in this section we focus
on analyzing the data in aggregate, but in later sections we will focus more
specifically on explaining the individual differences.

We began our analysis by testing for the broad influence of category con-
trast on generation. As in Experiment 1, we computed the frequency each
stimulus was generated as a function of its average distance from members
of the experimenter-defined category, as well as each participant’s average
within- and between- category distance. These data, shown in Figure 9, yield
very similar results. Participants generated stimuli that are distant from mem-
bers of the experimenter-defined category, and the categories in each condition
tended to possess more between-category than within-category distance: Bot-
tom, t(60) = 5.5, p = 8.3 × 10−7; Middle, t(60) = 2.71, p = .0088. We did,
however, observe a notable subgroup of participants in each condition who gen-
erated categories with more within-category than between-category distance.
Upon manual inspection, many of these individuals appear to have assumed
a ‘Corners’ strategy, placing exemplars in disparate corners of the space, thus
producing much more within-category distance, see Figure 8 for examples.

To explore the distributional structure of the generated categories, we com-
puted the range of exemplars along each axis (X, Y), as well as the correlation
between features. These data, shown in Figure 10, again demonstrate the
degree of individual differences observed in our study. In each condition, we
observed tightly clustered and widely distributed categories along each dimen-
sion. Although most participants generated uncorrelated categories in both
conditions, many still produced positively and negatively correlated categories.

As noted above, if the distributional structure of generated categories is
influenced by the shape of the space not occupied by members of known cate-
gories, then participants in the Middle condition would be more likely to place
exemplars in the upper and lower regions of the space, as members of the



Springer Nature 2021 LATEX template

26 RUNNING HEAD: Similarity, Contrast, and Representativeness in Categorization

Bottom Middle

Min

Max

X Range

Bottom Middle

Min

Max

Y Range

Bottom Middle

-1

-0.5

0

0.5

1

Correlation

Fig. 10 Violin-plots of the distributional statistics from the categories generated in
Experiment 2.

experimenter-defined category are equidistant from these regions. Participants
in the Bottom condition should be less likely to generate category members
in the bottom regions because members of the experimenter-defined category
are located there. One way to test these predictions is to analyze the Y-axis
ranges of the generated categories: If Middle participants utilize the upper
and lower regions of the space, their categories should vary more along the
Y-axis. T-Tests comparing the conditions on the distributional statistics, how-
ever, reveal few between-group differences: the conditions do not differ with
respect to X-axis range, Y-axis range, or feature correlations (ps > 0.17).

However, our ability to detect differences in Y-axis range using a standard t-
test between the conditions is, in this case, diminished due to the non-normality
of the data (Shapiro-Wilk normality test W = 0.77, p < 2.2 × 10−8 for the
Middle condition and W = 0.85, p = 2.7 × 10−6 for the Bottom condition).
Figure 11 depicts the Y-axis range and Y-axis position of exemplars generated
by each participant. The categories are sorted by overall range, and then col-
ored by training condition. These data reveal that there were nearly as many
participants who generated categories spanning the entire Y-axis as those who
generated categories spanning almost none of the Y-axis. Indeed, the median
produced Y-axis range is much smaller in the Bottom than Middle condition,
whereas they are essentially identical in X-axis range. The non-normality of
the Y-axis range distributions thus requires that we use a different analytic
approach to addressing the experiment’s main question.

Because our main prediction concerns the generation of exemplars within
the upper and lower regions of the domain, we compared the conditions in
terms of the frequency with which participants generated examples above and
below the categories. Specifically, we counted the number of participants in
each condition who placed at least one ‘Beta’ exemplar on the top and bot-
tom ‘rows’ of the space (the maximum and minimum possible Y-axis value,
respectively). The resulting contingencies data are shown in Table 1.

Firstly, it should be noted that nearly every participant utilized the top
and/or bottom rows: only 10/122 participants generated their category entirely
within the interior region. Fisher’s Exact Tests comparing the conditions reveal
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Fig. 11 Y-axis range and position of the participant-generated categories from Experiment
2. Each line corresponds to a participant’s category, with notches corresponding to the Y-
axis position of exemplars within the category (notches may overlap). Participants are sorted
by overall range, and then by condition.

Table 1 Experiment 2 results.

Middle Used top row No top row
Used bottom row 28 18
No bottom row 11 4

Bottom Used top row No top row
Used bottom row 16 8
No bottom row 31 6

that more Middle participants generated an exemplar in the bottom row,
p = .0001, again demonstrating the role of contrast in guiding where exem-
plars are generated. The conditions did not differ in use of the top of the
space, p = .16, however, more Middle participants placed exemplars in the top
and bottom rows, p = .04. The latter effect is of particular interest here, as
it indicates that the shape of the unoccupied space exerts some influence on
the distributional structure of generated categories: Participants in the Middle
condition were more likely to generate a category spanning the entire Y-axis.
Thus, the distributional structure of the generated categories can be influ-
enced without any change to the distributional structure of the given category.
Rather, it can be affected by category contrast alone.

6.3 Discussion

In Experiment 2, we replicated the core findings from Experiment 1. Stimuli
are more likely to be generated if they are distant from exemplars in other cat-
egories, and most participants generate categories with more between-category
than within-category distance. However, we additionally found that the posi-
tion of a previously learned category (rather than its distributional structure)
influences the types of categories people generate: Participants who learned
the ‘Middle’ type were more likely to generate categories spanning the entire
Y-axis of the space. Participants who learned the ‘Bottom’ type were less likely
to do so as a result of the presence of opposite category exemplars in the lower
regions of the space.
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This finding cannot be explained from the perspective that the distribu-
tional structure of previously learned categories is the sole determinant of the
distributional structure of generated categories. However, the observed behav-
ior is expected from a category contrast perspective: Participants seeking to
generate a perceptually distinct category will be more likely to use areas of
space that are unoccupied by exemplars belonging to previously learned cat-
egories. In the Middle condition, the upper and lower regions of space are
equidistant from members of the experimenter-defined category, whereas in
the Bottom condition, the lower region of the space is closer to members of the
experimenter-defined category. Thus, while Middle participants may form cat-
egories around the use of the equally unoccupied areas, the same is not true for
the Bottom condition. Overall, Experiment 2 further supports the importance
of contrast in category generation.

7 Model-based Analyses of Experiments 1 and 2

Experiments 1 and 2 revealed systematic and strong effects of category con-
trast on category generation. In this section, we analyze the performance of
the different formal models at explaining the experimental results. Specifically,
we present simulations from the two novel contrast models: PACKER and the
representativeness model, and compare them to two models that do not incor-
porate contrast: the copy-and-tweak model (discussed in Section 4.1.1) and
an implementation of the hierarchical Bayesian model proposed by Jern and
Kemp (2013), described in-depth in Appendix B. For our simulations here, the
copy-and-tweak model is defined as a variant of PACKER with the θc param-
eter constrained to be zero. The comparison of this set of models serves two
purposes. The first is to highlight the explanatory role of contrast in cate-
gorization: If contrast affords little explanatory advantage, then there should
be few differences in performance between PACKER and copy-and-tweak, or
between the representativeness and hierarchical Bayesian model. The second
is to compare two methods for integrating contrast into categorization models:
PACKER and representativeness Each method has complementary strengths
and weaknesses: Whereas PACKER and copy-and-tweak are relatively insen-
sitive to the distributional structure of learned categories (relying only on
exemplar similarities), the representativeness and hierarchical Bayesian model
generates categories exclusively on the basis of knowledge of how existing
classes are distributed.

We first explore each model’s quantitative performance in capturing human
behavior across Experiments 1 and 2. Next, we describe how qualitative dif-
ferences in category structure can be captured by each model. We compare
qualitatively the categories generated by people and the models for Experi-
ments 1 and 2. Based on these analyses, we describe the relative strengths
and weaknesses of each model’s account of category generation. This moti-
vates Experiment 3, which provides an empirical test of where the two contrast
formulations make divergent predictions.
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Table 2 Results of model-fitting to the combined datasets from Experiments 1 and 2. Note
that smaller AIC values correspond to better model fits (adjusted for number of parameters)

PACKER Copy & Tweak Representativeness Hierarchical Bayesian
AIC = 9069 AIC = 9813 AIC = 8783 AIC = 9881
L = −4531 L = −4905 L = −4388 L = −4937
α = 0.51 α = 3.22 κ = 12.23 κ < 0.001
θc = 3.09 θc = 0 (fixed) ν = 1.00 ν = 5.44
θt = 3.47 θt = 3.00 λ = 7.04 λ = 0.06

θ = 10.21 θ = 3.09

7.1 Quantitative Model-based Analyses

To obtain a global measure of the quality of each model’s account, we first
fit the parameters of each model to our entire dataset (Experiments 1 and
2 combined), using the Nelder-Mead optimization method which maximized
the log-likelihood of the model’s predictions of the observed responses (1220
responses from 305 total participants). See Appendix A Model Fitting Proce-
dures for more details. We fit three parameters in the PACKER model (α, θt,
and θc; see Section 4.1), as well as four in the representativeness model and the
hierarchical Bayesian model (κ, λ, ν, and θ; see Section 4.2 and Appendix B
respectively). We fit only two parameters for the copy-and-tweak model (α, and
θt), as θc is held constant (θc = 0). Attention (w, see Equation 1) in PACKER
and copy-and-tweak was set uniformly. Parameters were not allowed to vary
between participants or conditions – the goal was to obtain the best-fitting
values to our entire dataset.

Table 2 contains the model fits. Due to the uneven number of fitted parame-
ters among the models, we compare the model fits using the Akaike Information
Criterion (AIC; Akaike, 1974), where smaller values correspond to better fits
(discounted by model complexity as measured by the number of parameters).
The same qualitative results were obtained with alternative model compar-
ison metrics (e.g., BIC, Schwarz, 1978; AICC , Hurvich & Tsai, 1989). In
addition to AIC, Table 2 contains the corresponding log-likelihood (L) and
the best-fitting parameter values. These results reveal strong model differen-
tiation: both contrast models (PACKER and the representativeness model)
achieved far better fits compared to their non-contrast counterparts: copy-and-
tweak and the hierarchical Bayesian model respectively. Interestingly between
the contrast models, the hierarchical model (representativeness) outperformed
the exemplar-based theory (PACKER), whereas between the non-contrast
models, the reverse is observed. Specifically, here the exemplar-based model
(copy-and-tweak) performed somewhat better than the hierarchical Bayesian
model.

While PACKER’s advantage over copy-and-tweak may tentatively be
attributed to the model’s sensitivity to category contrast (this will be explored
in detail below), the advantage shown by copy-and-tweak over the hierarchical
Bayesian model may be attributed to its exemplar-based representation of cat-
egory B, as opposed to forcing a prototype-based representation as assumed by



Springer Nature 2021 LATEX template

30 RUNNING HEAD: Similarity, Contrast, and Representativeness in Categorization

the hierarchical Bayesian model. As observed in Figures 4 and 8, the generated
categories we observed were often widely distributed, with no items near the
category prototype. This aspect of the data is inconsistent with the multivari-
ate normal distributions (similar to prototypes) used to represent categories
in the Jern and Kemp (2013) model, but can be easily accounted for using an
exemplar-based approach. Interestingly, representativeness using a prototype
approach fits better than an exemplar-based approach.

A key distinction between the contrast and classical models is that only the
contrast models are capable of making strong predictions about the location of
new category members when the target class is entirely novel (i.e., no member
of the category has been observed). Under these circumstances, there are no
examples to copy, and thus the copy-and-tweak model predicts that items are
generated at random. Likewise, with no observations on which to condition
the category distribution, the hierarchical Bayesian model also picks an item
at random.

Thus, it is possible that the failure of the classical models is simply due to
their inability to explain each participant’s first trial (generating the first item
in the ‘Beta’ category). To ensure this is not driving our results, we conducted
an identical set of simulations as above, excluding the first trial (leaving 915
responses in the dataset): Again, the representativeness model (L = −3286,
AIC = 6580) and PACKER (L = −3377, AIC = 6759) achieved better fits
than the copy-and-tweak (L = −3564, AIC = 7132) and hierarchical Bayesian
(L = −3597, AIC = 7201)5 models.

Finally, because copy-and-tweak is nested within PACKER, we can use
a likelihood ratio test to compare the two models. PACKER explains the
aggregate data significantly better than copy-and-tweak (χ2(1) = 747, p <
10−100 for all data and χ2(1) = 375, p < 10−100 excluding the first example),
providing further evidence that category generation is better explained when
contrast is considered.

Through comparison with the copy-and-tweak model, Figure 12 more
clearly demonstrates the robustness of the explanatory gains yielded by
PACKER’s category contrast mechanism. It displays the log-likelihood of the
participants’ results under PACKER as a function of the θc parameter. The
model’s other parameters (α, θt) were set according to copy-and-tweak’s best
fits from Table 2, and thus when θc = 0, the models are equivalent. The figure
clearly shows a “sweet spot”: a convex region in which PACKER achieves
superior fits as a result of changes to θc. The best fitting values lie well above
the value of 0 assumed by the copy-and-tweak model, which demonstrates the
robustness of the contrast effect (though note PACKER achieves even better
fits when its parameters are fitted together, as in Table 2). In sum, the data are
better explained when both within-category similarity and category contrast
is considered.

5The best-fitting κ for the hierarchical Bayesian model is very small. This is because κ reflects
the influence of the prior mean on the posterior mean relative to the exemplar mean. Thus, a very
small for κ means the empirical mean is much more predictive of future exemplars in the category.
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Fig. 12 PACKER’s fit as a function of its prioritization of within-category and between-
category similarity (using the θc parameter). To facilitate comparison, PACKER’s other
parameters (α, θt) were set to the best fitting values obtained for copy-and-tweak in Table
2. The black diamond marker indicates the log-likelihood for the point where θc = θt.

7.2 Producing Qualitatively Different Categories With
Each Model

As noted in Experiments 1 and 2, we observed a great deal of individual dif-
ferences in the types of categories that participants generated. Within each
condition, there were a wide variety of category types, such as row and col-
umn categories (see Figures 4 and 8). The simulations reported above serve
to evaluate the models while considering the entire dataset, but a secondary
goal of any formal account should be to provide some explanation of how
different profiles of performance emerge. Many of the individual generation
profiles we observed can be described with the models simply by tuning the
model’s parameters in a principled manner. In this section, we describe more
specifically how the most frequently observed profiles can be realized.

By manual inspection, it is evident that the most common profiles of gen-
eration consist of: (A) a tightly-distributed ‘cluster’ of examples, (B) ‘row’-
and ‘column’-like arrangements (varying widely along one dimension but not
the other), and (C) a ‘corners’ arrangement with examples placed into dis-
parate corners of the space. These four profiles are distinct in terms of the
distribution of the generated category along each dimension: Whereas the clus-
ter profile is tightly distributed along both dimensions, the row and column
profiles are tightly distributed along just one dimension. Finally, the corners
profile is widely distributed along both dimensions.

In the framework proposed by PACKER, the cluster and corners pro-
files arise based on different prioritization of within-category similarity versus
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Fig. 13 PACKER generation of a category ‘B’ example, following exposure to one member
of category ‘A’ and one member of category ‘B’. Predictions are shown for different attention
settings: (a) Increased weighting of the X-axis. (b) Increased weighting of the Y-axis. (c)
Uniform weighting (identical to Figure 1).

between-category contrast, and the row and column profiles arise based on
the prioritization of each dimension in the computation of similarity. For
example, in the cluster profile, there is a high degree of within-category
similarity along both dimensions, whereas in the corners profile there is
minimal within-category similarity. Thus, PACKER’s proposal is that these
individual differences arise as a result of different priorities: While the tight
cluster configuration can be considered PACKER’s ‘default’ mode (as it max-
imizes within-category similarity), the corners profile can be produced when
between-category contrast is put at a higher priority (i.e., θc > θt).

Likewise, in the row and column profiles, there is a large degree of within-
category similarity along one dimension but not the other. These differences
likely arise due to a differential focus on one dimension over another, and thus
they can be produced by changes to PACKER’s attention weights, w1 and w2

(see Equation 1). Traditionally, the attention weights in exemplar models are
thought to reflect the diagnostic value of each dimension towards classifying
the known category members (Kruschke, 1992; Nosofsky, 1984, 1986), but
within a generation context the weights specify the importance of within-
and between-category similarity along each dimension. For example, if all of
attention is allocated along the X-axis (w1 = 1 and w2 = 0), similarity along
the Y-axis no longer influences performance. As a result, PACKER will create
categories that are more widely distributed along the Y-axis, as similarity is not
taken into account along that dimension. As a general principle, differentially
weighting one dimension will result in the generation of categories that are
more widely distributed along the ignored dimension, conforming to a row-
or column-like arrangement. See Figure 13 for a depiction of how attention
influences PACKER’s performance.

As in PACKER, changes in the parameter settings of the copy-and-tweak
model can also be used to produce different patterns of generation. Indeed, as
copy-and-tweak is simply a special case of the PACKER model, the attention
weights operate exactly as described above to produce row- and column-like
categories. However, because the model is not influenced by category contrast,
it is biased toward generating tightly clustered categories, as new items are
always most likely to be generated near known examples of the target category.
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Thus, the lack of a contrast mechanism prevents the model from explaining
why some individuals widely distribute their categories to the corners of the
space.

For both the hierarchical Bayesian and the representativeness models, the
prior domain covariance matrix Σ0 can be used to explain the generation
of row-like and column-like categories. This covariance matrix specifies the
amount of variance assumed along each dimension (as well as the correlations
between dimensions) across the domain of categories. The covariance matrix
for a newly generated category, ΣB , is based on the assumed Σ0 as well as
the distributions of previously learned categories (see Appendix B). Thus, the
importance of each feature can be coded into Σ0 to alter the dimensional
variance of generated categories. Because the hierarchical Bayesian model pos-
sesses no mechanism to account for category contrast, the model is most likely
to generate new items that are similar to known examples of the target cate-
gory with no regard for how different it is to the contrast category. However,
the representativeness model predicts that new exemplars should provide more
relative evidence to the ‘Beta’ category, accounting for the tendency of row-like
and column-like profiles occupying the edge of the feature space.

While the copy-and-tweak and hierarchical Bayesian models possess mech-
anisms to explain row- and column-like categories, they cannot easily explain
why some individuals widely distribute their generated categories into dis-
parate corners of the space. This, however, reveals a more general limitation:
According to the copy-and-tweak and hierarchical Bayesian models, the dis-
tributional structure of generated categories is independent of their location
within the domain. For example, although the copy-and-tweak or hierarchical
Bayesian models can be parameterized to generate row- or column-like cate-
gories, there is no mechanism in place to ensure that what is generated will be
distinct from what is already known. In the next subsection, we explore this
prediction through an analysis of the interdependence between distributional
structure and location in category generation.

7.3 Qualitative Model-based Analyses: Category
Location vs. Distributional Structure

As noted above, while all three models make clear claims about the inter-
nal structure of generated categories, the copy-and-tweak and hierarchical
Bayesian models do not make any claims about how generated categories
should differ from what is already known. However, as we observed in the
results of Experiment 2, the distributional structure of a category is not always
independent of its location within the domain. To demonstrate this point in
more depth, we computed the X- and Y- axis ranges of every participant-
generated category. Taking the difference between these values (X − Y )
produces a measure of each category’s orientation in the space: positive dif-
ference scores correspond to categories with more X-axis range (horizontally
aligned, ‘Row’ categories), whereas negative difference scores indicate the
opposite (vertically aligned, ‘Column’ categories). Neutral differences scores
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indicate there was an equal amount of X- and Y-axis range, which can be pro-
duced by a number of different category types (‘Clusters’, ‘Corners’, etc; see
Figures 4 and 8). By plotting, for each possible stimulus, the difference scores
of categories it was generated within, we can relate the distributional structure
of generated categories to their location within the domain.

However, because many stimuli were infrequently generated (such items
near members of the ‘Alpha’ category), we cannot simply compute the empir-
ical average of the difference scores, as infrequently generated stimuli would
be likely to show artificially strong differences. Instead, we used a Bayesian
analysis to estimate the posterior mean of the difference between the horizon-
tal dimension’s and vertical dimension’s ranges, µx. We assumed an unknown
mean and unknown standard deviation for difference in ranges. The conju-
gate Normal-Inverse Gamma distribution provides a straightforward method
for this estimation:

µx =
ν0µ0 +

∑
x

ν0 + n
(11)

where µ0 is the prior mean, ν0 is a prior scale parameter (controlling the
weighting of the µ0), and n is the number of categories in which the stimulus
was a member (i.e., the number of scores in x). The default assumption is
that there is an equal amount of range along the X- and Y-axes, and so we
set µ0 = 0. Likewise, to give a moderate amount of weighting to the prior
mean we set ν0 = 1, though the results are robust to a range of values. Within
this approach, the resulting aggregation is a trade-off between the number of
generations and the strength of the range difference within each generated
category. Infrequently generated stimuli, as well as those with mixed positive
and negative scores, are given neutral difference scores.

The results of our analysis are shown in Figure 14 for the experiment and
model results6. The left-most column of Figure 14 displays the effect of cat-
egory location and contrast on the distributional structure of the category
generated by participants. These data reveal strong and consistent patterns
across all the conditions we tested in Experiments 1 and 2: Generated cate-
gories are more tightly distributed along the axis in which they are distinct. For
example, in the ‘Cluster’ condition, exemplars in the bottom-left of the space
are more often generated into vertically aligned categories, and exemplars in
the top-right are more often generated into horizontally aligned categories.
Similarly, in the ‘Bottom’ and ‘Middle’ conditions, horizontally aligned cat-
egories are generated above and below the experimenter-defined categories,
while vertically-aligned categories are generated to the sides. In the ‘Row’ con-
dition, most categories are horizontally aligned, and lie along the upper areas of
the space. There are no strong range difference patterns in the XOR condition.

These patterns of performance clearly depict the interdependence between
the distributional structure and location of generated concepts. Our results
can be interpreted in terms of local minimization of between-category
similarity: By distributing the generated category away from members of

6Prior to plotting, data were also processed using a Gaussian filter with σ = 0.8.
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Fig. 14 Behavioral and simulated range difference gradients. Each panel shows, for each
stimulus, the dimensional orientation of the categories it was generated into: vertically
aligned ‘columns’ (orange) versus horizontally aligned ‘rows’ (purple). Color intensity is
determined by the absolute value of the difference between the dimension ranges as calculated
by Equation 11.

the experimenter-defined category, participants may increase the degree of
between-category distance without drastically altering the degree of within-
category similarity.

To explore how well the PACKER, copy-and-tweak, representativeness, and
hierarchical Bayesian models explain our findings, we conducted simulations
using an individual-differences approach. As noted in Section 7.2, row- and
column-like categories can be produced by each model through changes to the
weighting of each dimension. We next describe how varying parameter values
within each model can capture these differences.

In the PACKER and copy-and-tweak models, the attention weights, w,
specify the importance of each dimension in the computation of similarity.
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While there exist methods to find the optimal attention weighting scheme given
a classification (see Vanpaemel & Lee, 2012), for simplicity we assume that
the ‘Alpha’ and ‘Beta’ categories are distinct along dimensions that the ‘Beta’
exemplars do not vary on. In this case, the weighting for a given participant
can be computed as:

wk =
exp {−θw · range(k)}∑
k exp {−θw · range(k)}

(12)

where θw is a free parameter controlling how differences in range correspond to
differences in weights (functioning similarly to the θ parameter in each of the
models), and range(k) is the range of examples generated by the participant
along dimension k. We used θw = 1.5 in our simulations, though the results are
robust and similar for other θw values. The resulting w values are thus inversely
proportional to the range of generated categories along each dimension, with
less range corresponding to greater weighting.

Unlike the PACKER and copy-and-tweak models, the representativeness
and hierarchical Bayesian model’s dimensional variances correspond to the
assumed variance of generated categories along each dimension (rather than
the inverse of the variance). Thus, a different transformation is appropriate
for incorporating the weights computed in Equation 12. For the hierarchi-
cal Bayesian model, we computed the dimensional variances according to:
λ(1−wk)2, where λ is a free parameter specifying the overall assumed variance
of the domain, and 2 corresponds to the number of dimensions in our exper-
iments7. Under this approach, evenly distributed weights correspond to an
assumed variance of λ. Likewise, larger values of w, which are produced when
the generated category is tightly distributed along one dimension, correspond
to smaller assumed variances.

Each model was used to simulate each participant’s generation inde-
pendently, with the importance of each dimension set according to the
participant’s generated category. The other free parameters within each model
were set as in Table 2. Every participant’s generation was simulated 2,000
times; given the 305 participants tested across the two experiments, each model
generated 610,000 categories in total. For comparison with our behavioral
results, we then computed the range difference gradient identically as with the
behavioral data (i.e., using Equation 11 with the simulated data). The results
are shown in Figure 14.

As in the more traditional model evaluation analysis described above, the
contrast models (i.e., PACKER and the representativeness model) provided
a much closer match to our behavioral results than the copy-and-tweak and
hierarchical Bayesian models. In all conditions, the contrast models distribute
categories similarly to the behavioral data: Horizontally-aligned categories
tend to be placed above and below members of the experimenter-defined
category, and vertically-aligned categories tend to be placed to the sides.
Conversely, because the copy-and-tweak and hierarchical Bayesian models are

7This calculation applies only in two-dimensional domains, where w2 = 1− w1.
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Fig. 15 Contrast model predictions indicating probability of generating the first Beta exem-
plar for each Alpha condition. Darker shades of blue indicate higher probabilities (normalized
within each plot).

insensitive to category contrast, these models do not produce any systematic
patterns of association between category location and distributional structure.
The sole exception is within the ‘Row’ condition of Experiment 1, in which the
majority of participants generated a ‘Row’-like category, widely distributed
along the X-axis but not the Y-axis. In these cases, both models are initialized
with weights that produce Row categories, but because category contrast is
not considered, categories are uniformly generated across the entire domain,
rather than concentrated within the upper-regions as observed behaviorally.

8 Experiment 3: Contrasting Contrast

Experiments 1 and 2 clearly established the importance of contrast in cate-
gory generation. Follow-up model-based analyses illustrated that both contrast
models account for participant performance better than models that do not
take into account contrast. We also found more support for the hypothesis of
contrast as representativeness versus contrast as exemplar dissimilarity across
the different Alpha conditions.

While the representativeness model fits better than PACKER, and in spite
of their fundamentally different structures, both contrast models make quali-
tatively similar predictions for Experiments 1 and 2. To illustrate this, Figure
15 shows how the models’ generating probabilities for the first Beta exemplar
are similar across both contrast models.8 Across the five Alpha conditions of
Experiments 1 and 2, the first Beta exemplars according to the contrast models
were generally more probable near the corners and edges. This is particularly
the case for the representativeness model, which almost exclusively predicts
generation at the corners, while PACKER can predict generation in the center
of the feature space in the XOR condition.

The effect of contrast for both models is similar in that they both tend to
produce exemplars that are distant from the Alpha category. However, this
is realized in different ways for the two models. The representativeness model

8Model parameters are set to the optimized values from Table 2.
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Fig. 16 Alpha exemplars for Experiment 3 (a) and the predictions from contrast models
PACKER (b) and the representativeness model (c) with square stimuli.

does not explicitly use a measure sensitive to distance from the location of
exemplars in the contrasting category. Instead, it is the assumption of unimodal
distributions that results in the model producing novel exemplars dissimilar
to learned exemplars. Consequently, it is possible to design a configuration of
Alpha exemplars where the representativeness model predicts novel exemplars
should be similar to the learned exemplars. However, PACKER cannot predict
this because it assumes that the similarity weight for contrasting exemplars is
negative.

In this section, we focus on a different category type – the Corner cate-
gory – that contrasts the two models of contrast. Here, each Alpha exemplar
is located at the corners of the feature space (see Figure 16a). We first identify
the predictions of each model in this condition. Second, we test these contrast-
ing predictions in a behavioral experiment. We then conduct a model-based
analysis of the two contrast models. The goal is to compare the two approaches
to incorporating contrast into categorization models. It is not to determine a
definitive best model of category generation.

In Experiment 3, the representativeness model estimates the underly-
ing Alpha category distribution to be centered on the feature space, with
probability densities highest in the center and lowest in the corners. The rep-
resentativeness of novel Beta exemplars generally decreases with the likelihood
of the underlying Alpha category distribution. Despite the Alpha exemplars
being in the corners, the predicted mean will be near the center of the Alpha
category (the center of the space; See 16b). As such, the Alpha likelihood is
lowest in the corners, and thus, the representativeness of the Beta category
will be largest in the corners.

Conversely, PACKER predicts a completely different result. With
PACKER, the probability of generating a Beta exemplar increases with the
dissimilarity from all Alpha exemplars. This results in Betas generated in the
center of feature space, where the candidate exemplars are as far as possible
from the Alpha exemplars (Figure 16c).

Another aspect of the contrast in the models’ predictions is the role of the
boundaries of feature space. The representativeness model prefers to generate
categories at the boundaries of feature space. PACKER is less sensitive to
boundaries. Boundaries tend to be where distance to the contrasting category
exemplars is maximized. But, as in cases like the stimuli for Experiment 3
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Fig. 17 Circle stimulus domain (a) and predictions from contrast models PACKER (b)
and the representativeness model (c). The unbounded feature (orientation) is represented on
the Y-axis, while the bounded feature (size) is represented on a X-axis. As with the square
stimuli, feature and direction assignment were counterbalanced across participants (in the
displayed example, circles are rotated clockwise up the Y-axis).

(Figure 16a), this is not always the case; Beta exemplars should be as far from
the Alphas as possible, which is maximized in the center of feature space.

Thus, in this experiment, we also examine how making one feature toroidal
(e.g., line orientation) affects the prediction of each model. The representa-
tiveness model prefers to generate categories on the feature that still has a
boundary. PACKER, in contrast, should continue to generate categories that
are most distant from the learned category regardless of the presence or absence
of feature boundaries – in this condition it would be the center of the bounded
feature. Experiment 3 manipulates whether one feature is bounded or toroidal
(always displayed as the Y-axis). One condition uses the same stimuli as before,
squares varying in lightness and size, both of which are bounded features. The
other condition use a new set of stimuli: circles that vary in size (a bounded
feature) and orientation (an unbounded feature; Figure 17a). Before describ-
ing the details of the experiment, we explain in detail each model’s predictions
given the Corner Alphas for a feature space where one feature is bounded and
the other is toroidal.

Compared to stimuli with two bounded features, PACKER makes a sim-
ilar prediction in generating the first Beta exemplar when one feature is
unbounded, with the curious exception that the highest density regions appear
compressed along the toroidal feature. Due to the toroidal nature of orienta-
tion, the maximum distance from the Alpha exemplars is half of the full range
of the feature – for an Alpha exemplar oriented at 0 radians, the furthest
distance to another exemplar is π radians.

For the representativeness model, adding a toroidal feature changes the
probability distribution for the underlying Bayesian model. For the toroidal
feature, space wraps back to 0 radians once it reaches 2π (we have conducted a
change of variables where y → y mod 2π, where mod is the modulus operator).
As we cross 2π and reach 0 again, the remaining probability density also gets
wrapped around, meaning that the density at 2π is added to 0 (and 2π+ε to ε,
and so on). This is called the wrapped Gaussian distribution (Mardia & Jupp,
1972). Note that the more familiar distribution for circular features, the Von
Mises distribution, is an approximation to the wrapped Gaussian distribution.
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See Appendix C for implementation details of the representativeness model
in a bounded and toroidal feature space.

The consequence of employing a wrapped Gaussian is presented in Figure
17c. Edge effects along the unbounded feature (displayed as the vertical axis)
are no longer present since the edges themselves no longer exist. Instead, the
probability of generating the first Beta exemplar is bimodally distributed at
the edges of the bounded feature (displayed as the horizontal axis). Thus, the
representativeness model and PACKER make orthogonal predictions for how
a toroidal dimension should affect category generation.

In this experiment, we test human category generation in two cases where
PACKER and the representativeness model contrast. The representativeness
model predicts categories should be distributed in the boundaries of the
bounded features. PACKER predicts category exemplars should be centered
in space and decay exponentially over bounded dimension(s).

8.1 Participants, Materials, and Procedure

We recruited 89 participants from Amazon Mechanical Turk who were ran-
domly assigned to the square stimuli (N = 46), or to the circle stimuli
(N = 43). The square stimuli were exactly the same as in Experiments 1
and 2, but with Alpha exemplars in the corners of the feature space. The cir-
cle stimuli were made up of unfilled circles with a radial line extending from
its center to its edge. These stimuli varied along two features: their diameter
within the range of [3.0, 5.8] cm (inclusive), and their orientation in the range
[2.587, 2π + 2.587] radians (inclusive), with 0 radians indicating a completely
horizontal line and orientation increasing in an anti-clockwise direction. The
line widths of the circles and radial line were set to 0.05 cm. Similar to Exper-
iments 1 and 2, participants first observed a training phase where four Alpha
exemplars were presented across three blocks followed by the generation phase,
and the features values are divided into 9 discrete steps. The training condition
was the Corner category for all participants.

8.2 Results and Discussion

Unlike previous experiments, Experiment 3 allows us to distinguish between
PACKER and the representativeness approaches to capturing contrast beyond
their quantitative fits by identifying specific qualitatively diagnostic markers.
Specifically, if PACKER is a better account of the data, we would expect a
relative decrease in the range of the entire Beta category along the unbounded
feature compared to the bounded feature. In addition, we would expect to see
a preference for first-generated Beta exemplars away from the boundaries of
the feature space – that is, the probability of generating an exemplar would be
negatively correlated with its distance from the center for bounded features.
These predictions are correspondingly reversed if the representativeness model
offers a better account of the data.
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Fig. 18 Violin-plots of the distributional statistics from the categories generated in Exper-
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Fig. 19 Heatmaps indicating the relative frequencies of generating the first Beta exemplar
in Experiment 3.

Figure 18 presents the distributional statistics for both square and circle
stimuli. Participants produced circle stimuli with significantly lower Y-range
(lower for the unbounded feature) as compared to the square stimuli (t(87) =
4.94, p = 1.9×10−6), which supports PACKER. There are no significant differ-
ences between the distributional statistics of each generated category between
square and circle stimuli (Figure 18).

The distributions of generated first-Betas (Figure 19) indicate further qual-
itative support for PACKER. In particular, the probability of generating the
first Beta exemplar for circles along the bounded dimension is significantly
negatively correlated with distance from the center (r(3) = −.95, p = .010).
Although the correlations for squares (r(3) = −.50, p = .40 and r(3) =
−.31, p = .61 for X and Y dimensions respectively) were not significant, they
were in the directions predicted by PACKER. Mean probabilities of gen-
erating first-Betas are presented in Figure 20. This analysis was excluded
for the toroidal dimension of the circle stimuli because the boundaries (and
consequently a center) are not defined for this feature.

Model generation probabilities of the first Beta exemplars do not qualita-
tively differ from earlier predictions even after fitting to the current dataset.
Figures 21a-b and 21c-d show the model predictions for square and circle stim-
uli respectively. While the predictions for the representativeness model for
circles appears different from earlier predictions (i.e., in Figure 17c), note that
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Fig. 20 Empirical mean probabilities of generating first Beta exemplars at each point of
distance from the center of the feature space. Distances are normalized such that 0 represents
the center and 1 represents the edge. Plot for the toroidal feature of circle stimuli is not
presented because a center is not defined for this feature.

Table 3 Results of model-fitting to the data set from Experiment 3. Smaller AIC values
correspond to better model fits (adjusted for number of parameters).

PACKER Copy & Tweak Representativeness Hierarchical Bayesian
AIC = 2954 AIC = 2963 AIC = 2971 AIC = 3025
L = −1474 L = −1479 L = −1481 L = −1508
α = 2.08 α = 3.73 κ = 10−10 κ = 0.29
θc = 0.87 θc = 0 (fixed) ν = 4.07 × 1020 ν = 1.00
θt = 2.18 θt = 2.57 λ = 0.14 λ = 0.001

θ = 0.73 θ = 7.50

our key expectation for this model was still met – specifically, it predicts the
highest first-Beta generation probabilities at the edges of the bounded features.

The contrast models were fit by optimizing them to only Experiment 3. Fit
statistics and parameter values are presented in Table 3. Although contrast-
ing distributional and contrast models is not the main focus of this section,
we present the quantitative results to provide further support that contrast is
needed in categorization models to capture human category generation. They
do not perform as well as their corresponding contrast models. Copy & Tweak
outperforms the Representativeness model. This is likely due to these cate-
gories being more challenging to encode with a Gaussian distribution than
an exemplar-based model (and its corresponding nonparametric distribution).
Overall, in line with our qualitative observations, PACKER emerges as the
best-fitting model in aggregate. Additionally, PACKER fits individual par-
ticipants significantly better than the Representativeness Model (57 of 89;
two-tailed Binomial test p = 0.011)
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Fig. 21 Heatmaps indicating the probabilities of each contrast model generating the first
Beta exemplar in Experiment 3 for both square and circle stimuli. Models have been fit to
data from Experiment 3.

Overall, contrast as formulated by PACKER captured how people gen-
erated cateogries in this experiment. Our goal is not to conclude then that
PACKER is the best model of category generation. Indeed, the representative-
ness approach did better in capturing category generation for Experiments 1
and 2. Rather, our goal is to demonstrate that both approaches to contrast
are promising and should be explored further in future work.

9 General Discussion

The sensory impression of every stimulus and event is unique. Grouping dis-
tinct patterns of sensory information into categories is a fundamental task
solved by the mind. Most work has focused on how people learn new cate-
gories that are provided to them through unlabeled, partially labeled, or fully
labeled examples. How were these categories first determined? Some natural
categories are likely to be the result of regularities in the dynamics of our
environment. But, these are only a subset of the categories that people learn.
Other categories, such as tools and ideas, were generated by people over time.
What basic principles underlie how people generate categories?

While the bulk of prior research on categorization has focused on the classic
finding that generated concepts tend to be distributionally similar to known
concepts, there has been little work addressing the role of contrast in category
generation: How is it that people are able to create something different from
what is already known? We developed two novel models, each incorporating
a different conceptualization of category contrast. One model is PACKER,
which is an exemplar-based model that formally specifies the role of contrast in
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generation as exemplar dissimilarity. Specifically, the model proposes that cat-
egories are represented as exemplars in a multidimensional psychological space,
and generation is constrained both by within-category and between-category
similarity: Exemplars belonging to the same category should be similar to one
another, and exemplars belonging to different categories should not be simi-
lar to one another. The second model is a novel hierarchical Bayesian model
with a representativeness mechanism. This model generates exemplars that
are more representative of (i.e., has greater relative evidence from) the novel
category compared to the learned category.

We reported two experiments demonstrating systematic effects of category
contrast in category generation. Members of participant-generated categories
tended to be highly dissimilar from members of previously-learned categories,
and were usually more similar to one another than to members of other cat-
egories. We also observed broad interdependence between the distributional
structure (feature variance, correlation) and physical instantiation (location
within the feature space) of generated categories: In Experiment 2, we found
that the unoccupied regions of the domain influenced the distributional struc-
ture of categories, and in both experiments we observed that participants
distributed their generated categories to increase contrast with what was
already known.

We conducted simulations comparing the contrast models’ account of our
results to the classical proposals for category generation: a “copy-and-tweak”
model (realized as a variant of PACKER with no sensitivity to category
contrast), and a hierarchical Bayesian model designed to explain the classic
distributional similarity effect. In all simulations, we found that the con-
trast models captured a previously unexplained and unexplored aspect of
human category generation. In particular, by measuring PACKER’s fit as a
function of its prioritization of within- and between-category similarity, we
observed that considering either constraint exclusively results in a relatively
low-quality account. Instead, PACKER’s best results were obtained when both
constraints are considered, indicating that human learners do not generate
novel concepts exclusively on the basis of within-category similarity or between
class-contrast. This finding mirrors our behavioral results and demonstrates
that both constraints influence generation when explained with an exemplar
model.

While the representativeness model was found to be a better fit to data
from Experiments 1 and 2, both contrast models essentially made qualitatively
similar predictions across all conditions in those experiments. In Experiment
3, we collected behavioral data on a category generation condition that was
designed to qualitatively distinguish the two contrast models. Specifically, in
this condition where exemplars were located at the corners of the feature space,
PACKER predicted the initial generation of centrally-located novel exem-
plars while the representativeness model predicted novel exemplars similarly
located at the corners. Interestingly, data from this experiment were better
fit, qualitatively and quantitatively, by PACKER than the representativeness
model.
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9.1 Similarity and Contrast in Cognition

We propose category contrast as a primary constraint in categorization. For
categories to be useful, they should not all be identical, or in other words, they
should be different. Thus, a newly generated category should be different than
pre-existing categories. Beyond its role in category generation specifically, cate-
gory contrast is also of fundamental importance in categorization more broadly.
All other factors held constant, new categories are easier to learn if they are
dissimilar to members of other categories, and knowledge of highly distinct
categories is applied more accurately than that of ill-defined categories (Ashby,
Boynton, & Lee, 1994; Imai & Garner, 1965). Likewise, basic-level categories
(Rosch et al., 1976) are thought to be abstracted in order to maximize within-
category similarity while minimizing between-category similarity. Finally, the
act of forming category representations affects similarity judgments about cat-
egory members and nonmembers, with category members being viewed as more
similar to one another than members of other categories (Goldstone, 1994,
1996; Goldstone, Lippa, & Shiffrin, 2001).

Beyond the traditional categorization literature, one can find instances of
the trade-off between within and between-class similarity in linguistic cate-
gories over perceptual dimensions. For example, Regier et al. (2007) showed
that the partitioning of color categories reflects such a trade-off in a psy-
chological space – colors are partitioned into groups with members that are
viewed as highly similar to one another yet distinct from other colors. A simi-
lar trade-off can be observed in phoneme categories. Different exemplars of the
same phoneme must be similar to one another, while contrasting from other
phonemes, such that a listener can infer the appropriate phoneme. This pat-
tern has been found and modeled in the natural acoustics of American English
vowels (Feldman, Griffiths, Goldwater, & Morgan, 2013; Hillenbrand, Getty,
Clark, & Wheeler, 1995). As linguistic categories must have been created at
some point in human history, it is revealing that the constraints of emulating
distributional structure across categories and having categories contrast from
one another still bias human category generation today.

The dual forces of within-class similarity and between-class contrast influ-
ence cognitive functions in a wide variety of domains. The PACKER model
is notable in that it explicitly interprets this trade-off within the domain of
categorization, and allows us to begin to understand the relatively understud-
ied processes involved in category generation through our more well-developed
tools for understanding human categorization.

9.2 Implications for Creative Cognition

Although the focus of this article has been to address the role of contrast
in category generation, our findings and approach have relevant implications
for research in creative cognition. A central focus of the creative cognition
approach has been to explain acts of creativity in terms of the mental represen-
tations and processes that are commonly studied in cognitive psychology and
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cognitive science (Finke, Ward, & Smith, 1992; S.M. Smith et al., 1995). How-
ever, unlike other fields in the study of cognition, creative cognition research
rarely employs quantitative models to evaluate the explanatory value of such
representations and processes. Our modeling results provide a concrete exam-
ple of how formal approaches may be used to gain insight into the nature of
creative cognition.

In addition to demonstrating the utility of formal modeling for studying
creative cognition, the contrast models here specifically offer an additional
interpretation of some of the field’s most central findings. For example, per-
haps the most foundational principle from this literature concerns the limiting
influence of prior knowledge: Individuals create new categories composed of
features from existing classes, and what is created can be influenced drastically
through the introduction of cues or examples (Marsh et al., 1999; S.M. Smith
et al., 1993). In this paper, we have identified another important aspect of
the constraining influence of prior knowledge: What is generated cannot be
the same as what is already known. Further, there is systematicity in how
generated categories differ from prior knowledge. The results of our simula-
tions suggest that this conceptualization of difference can be addressed in at
least two different ways. Specifically, simulations with PACKER demonstrate
that the constraining influence of difference is concisely explained in terms of
a trade-off between within-category similarity and between-category dissimi-
larity. Conversely, the representativeness model shows that this influence can
also be the result of enhancing the representativeness of generated exemplars
to their category.

PACKER may offer an additional interpretation of existing accounts of
creative generation. Most notably, a leading account within the creative cogni-
tion literature, the Path of Least Resistance (Ward, 1994, 1995), also explains
generation in terms of an exemplar-based retrieval process. This account was
designed to explain the creative generation of natural categories (e.g., new
species of plants and animals) and as a result relies strongly on the hierarchical
organization of these categories: Individuals are thought to retrieve an exam-
ple of the higher-level category being generated (e.g., bird may be retrieved
from the category animal), and then systematically alter what was retrieved
to make something new. As the PACKER model does not assume knowledge
is hierarchically organized (this is true of the exemplar view more broadly, see
G.L. Murphy, 2016), the model may be viewed as a formal instantiation of the
Path of Least Resistance for application in a traditional artificial categorization
domain (when there is no established hierarchy of categories). PACKER’s suc-
cess in explaining generation within an artificial domain motivates future work
exploring the nature of category contrast within a more naturalistic setting.

The broader study of creativity currently involves a wide breadth of differ-
ent approaches (for a review, see Kozbelt, Beghetto, & Runco, 2010), such as
those based on free association (Mednick, 1962) and conceptual combination
(Estes & Ward, 2002; G.L. Murphy, 1988). In addition, recent work in the
machine learning literature has explored using neural networks to address the
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overall problem of creative generation (e.g., Chen et al., 2016; Goodfellow et
al., 2014; Ho & Ermon, 2016; Kingma et al., 2016). In contrast to these varied
investigations, we reduced our focus by studying a highly complex behavior
(category generation) as it applies within a well-established domain (artificial
category learning). We hope that future work incorporates and highlights the
importance of contrast into theories of creativity and adapts the discussed
contrast models to work in contemporary creative generation methods.

9.3 Implications For Categorization

Categorization research addresses the representations and processes that
underlie the learning and use of categories. Category learning tasks are gener-
ally about figuring out which items belong to which category. Once learned,
categories are generally used to classify new stimuli and to make inferences
beyond the available information. Our work is fairly unique in that people
learn a category through positive examples and then create another category
that would make sense in the domain. Such scenarios have direct application
to real-world situations. For instance, consider a rock musician in the 1970s
who wants to write new types of rock music. Given the diverse types of existing
rock music that the musician is aware of, the musician must identify features
of this new sub-genre that are unique to that sub-genre (e.g., introduce instru-
ments that may not typical to rock music at the time, such as accordions or
synthesizers). In the present studies, we have learned something about the
form that such expectations on new categories are likely to take.

We can think of the category generation task in our studies as asking a
person to formulate an idea about what set of items in the domain are most
interestingly not members of the original category. To meet this condition, the
items must take some form of coherence that aligns with that of the origi-
nal category and some form of distinctiveness relative to the original category.
Reflecting the basic level of organization in natural categories, it makes sense
to generate a set of items that possess strong within-category coherence (by
importing or systematically transforming the internal structure of the origi-
nal category) as well as strong between-category differentiation (by creating
maximum contrast with the original category, be it through exemplar-based
dissimilarity or the maximization of exemplar-category representativeness). In
this sense one can see the patterns of performance in the category generation
task as recapitulating the order of semantic organization.

The current work also suggests exciting directions for related investiga-
tions into unsupervised categorization. While the unsupervised categorization
literature is primarily interested in the generation of categories within a set of
observed exemplars where no prior categories are learned (e.g., Pothos et al.,
2011), our category generation studies are focused on the production of novel
category exemplars themselves. Despite this distinction, both types of catego-
rization research are ultimately interested in the question of how categories
can be formed. The results of our current work indicate that the formation of
categories is constrained by some measure of contrast. To our knowledge, this
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explicit investigation of category contrast has not yet been attempted in the
unsupervised categorization literature.

Interestingly, the unidimensional sort bias that is commonly observed in
unsupervised categorization (Ahn & Medin, 1992; Imai & Garner, 1965; Milton
& Wills, 2004), where participants sort unlabeled family resemblance cate-
gory exemplars by focusing on a single feature, was not consistently observed
in our tasks. In our experiments we only observed this bias in the row con-
dition of Experiment 1, whereas in other conditions participants generated
categories that typically varied along both dimensions. This may be unsurpris-
ing at face value, since participants in conditions other than the row condition
were trained on a prior category that varied on both dimensions. However,
these results place constraints on how broadly applicable the unidimensional
bias is to different types of category construction. Additionally, the unidimen-
sional sort bias is observed in category construction tasks in which participants
develop a category-level organization of a provided domain while category gen-
eration tasks involve generating a new category relative to one that was just
acquired (one might say that participants are forging a domain from a cate-
gory rather than categories from a domain). Since the more creative task of
generating a category from scratch (with respect to an established category)
does not invoke the unidimensional bias, this suggests that a more creatively
demanding version of a sort task might also reduce the bias.

9.4 Exemplar Dissimilarity and Representativeness in
Categorization

Although both PACKER and the representativeness model perform better
than the classical models, they appear to be capturing fundamentally different
aspects of contrast in categorization. Specifically, the representativeness model
excelled in predicting categories generated by participants in Experiments 1
and 2. Conversely, PACKER was the best-fitting model in accounting for cat-
egories generated from the Corner category type, especially when the stimuli
had a toroidal feature.

While the contrast models were born quite naturally out of the cor-
responding classical models, it is worth considering if similar benefits in
prediction would be seen if the contrast mechanisms were applied to differ-
ent classical models. Although there is no clear way to adapt the exemplar
dissimilarity mechanism to the current hierarchical Bayesian model, it is a
fairly straightforward process applying the representativeness mechanism to
an exemplar model. Specifically, by treating the similarity measure (Equation
1) in the current implementation of copy-and-tweak as a density estimate for
the representativeness mechanism (Equation 4), we gain a new model of rep-
resentativeness that is based on exemplar similarity instead of a multivariate
Gaussian likelihood.9

9An analogous implementation of the representativeness mechanism to PACKER results in both
θc and θt adding to constant value that is independent of the similarity to contrast and target
exemplars respectively. Consequently, it is formally equivalent to a copy-and-tweak model with
representativeness.
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How well does a representativeness model that uses exemplar similarity to
represent the category’s density over features explain our experimental results?
We find that for data from experiments 1 and 2, this model substantially
outperforms its classical counterpart, but not to the extent of PACKER or
the representativeness model. Specifically, the model fits here yielded L =
−4815 and AIC = 9633 for the entire set of data from Experiments 1 and
2 and L = −3474, AIC = 6953 for the same data excluding the first trials
(cf. Table 2). When we fit the model to data from Experiment 3, we find
that L = −1486, AIC = 2975, which indicates a poorer fit than its classical
counterpart (cf. Table 3). Overall, the representativeness model performed
best when generating categories where previous category examples were not at
the edges of the feature space. Conversely, PACKER performed better when
the previous category was at the extremes of the features or if a feature is
bounded. These results suggest that the predictive advantages to including
the representativeness mechanism is not limited to a hierarchical Bayesian
model, but can also be found when applied to an exemplar model. Although its
performance is not as strong as either of the fully-developed contrast models,
there can be a benefit to the representativeness mechanism that is independent
from any interaction with a hierarchical Bayesian framework. Ultimately, it
appears that there is no single model that can capture the entirety of our
empirical data.

9.5 Limitations and Future Directions

PACKER explained the results of Experiment 3 the best, whereas the represen-
tativeness model explained the results of Experiments 1 and 2 the best. Thus,
no model was definitively the best at capturing human category generation
across the three experiments. PACKER struggles to produce new categories
that are appropriately influenced by the distributional properties of previously
learned categories (see Jern & Kemp, 2013; Ward, 1994). While we success-
fully replicated this effect in Experiment 1, we also found that its influence is
weaker than category contrast in some scenarios. Even within Experiment 1,
we found systematic inconsistencies: by generating exemplars into unoccupied
regions of the space, participants who learned an ‘XOR’ category, composed
of members that are widely distributed along both features and are positively
correlated in space, tended to generate categories with an opposite (negative)
correlation.

Nonetheless, these classic effects are a core element of the phenomenol-
ogy of category generation, and PACKER does not include any mechanisms
that explain them. Instead, through the development and evaluation of the
PACKER model, we have sought to add new elements into such a phe-
nomenology: The broad and strong influence of category contrast, and the
interdependence between category location and distributional structure. It
may be possible to combine the hierarchical Bayesian approach proposed by
Jern and Kemp (2013) with PACKER’s underlying claims to obtain a “best
of both worlds” model, capable of explaining the role of contrast in category
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generation, as well as the emulation of distributional structure. However, as
noted in the introduction, the incorporation of category contrast is antithetical
to the core principles of a traditional, semi-conjugate Bayesian approach. This
suggests that category generation is a fundamentally different computational-
level problem (different from those posed by Jern & Kemp, 2013; Kemp &
Jern, 2014), which is supported by the representativeness form of their model
performing much better.

Characterizing that problem and conducting a rational analysis is an
important direction for future research. One potential direction for solving this
would be to analyze recent successful models in Generative AI. Trained image-
to-text models could be interpreted as storing a large number of categories
(text) linked to images (stimulus features) through a complex set of weight
layers and transformations. Some of these methods, such as CLIP (Radford et
al., 2021), use contrastive learning techniques that seek to maximize the simi-
larity of model response to items in the same category and minimize similarity
of model response to those in other categories. Connecting our work to these
exciting developments in Generative AI could be mutually beneficial. It would
enable the development of categorization models with contrast that work with
real-world categories and images. Understanding how contrast works in tradi-
tional artificial categorization studies could help explain the role of contrast in
large-scale Generative AI models. We are excited to pursue these connections
in future work.

Another direction for understanding contrast at the computational-level
relies on the formal equivalence between exemplar modeling and Importance
Sampling approximations (Shi, Griffiths, Feldman, & Sanborn, 2010). Using
this theroetical connection, it may be possible to derive the computational-
level problem PACKER approximates. Once formalized in probabilistic terms,
it should also be straightforward to incorporate distributional factors into
the model. This would unite PACKER with the Bayesian representativeness
model, and they would differ in terms of their assumptions about how peo-
ple represent category distributions (as exemplars or prototypes, respectively).
Alternatively, it may be possible to integrate the core principles of either model
of contrast into other categorization models (e.g., Kurtz, 2007; Love et al.,
2004; D.J. Smith & Minda, 2000).

The present work focuses on the influence of contrast on categorization,
primarily by exploring two different conceptualizations of contrast. However,
throughout this paper we have only explored one type of category generation
problem, that is the generation of new categories in an artificial domain. It is
possible that the strength of the influence of contrast on category generation
decisions varies depending on the nature of the category generation problem,
for instance, in situations where the boundaries of the domain are not clearly
defined. To provide some intuition for this, consider the following example: an
entomologist is asked to draw a new type of insect that they have never seen.
Clearly, features of the new insect will be constrained by the definition of an
insect: it will be an arthropod with six legs and a relatively hard exoskeleton.
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However, there are no strict limitations on other features such as how large
the insect needs to be, or if the insect should have a particular type of pattern
on its body. In this scenario, it is plausible that the entomologist will draw
an insect that is fairly similar to insects that currently exist (e.g., small in
size with a camouflage pattern that matches its environment) as opposed to
something completely different (e.g., a horse-sized beetle with roman numerals
on its back), indicating that contrast plays only a minor role in the decision
making process. In this situation it appears that there is a combination of
clearly defined constraints on the domain boundary that are imposed by the
external environment (insects must be arthropods with six legs) but also ill-
defined constraints that are imposed by the observer (insects are probably
small and have patterns on their body that suit the environment). However,
the relation of these constraints (and the interactions between them) to the
role of contrast is not currently well understood.

The definition of the domain boundary is only one possible factor that could
influence the effect of contrast on categorization. It is also plausible that other
conditions such as the nature of the instruction (“Generate a new category
that is Not Alpha” vs “Generate a new category that is Beta”) can affect the
extent to which contrast influences categorization. Though our current contrast
models can allow the influence of contrast to vary, they do not make any
predictions regarding the specific conditions under which contrast can vary.
Consequently, addressing this issue would be an immensely promising avenue
for future research.

10 Conclusions

The generation of new concepts and ideas is a highly interesting topic, but it is
difficult to study in a controlled experimental environment. In this paper, we
have provided such an examination of category generation as it applies within
an artificial categorization experiment. Extending the literature on creative
cognition, our experiments provide a detailed picture of the role of category
contrast in generation: People seek to create concepts that are distinct from
what they already know, and the nature of what is created can be influenced
by what does not yet exist. Our simulations with traditional exemplar models,
as well as a hierarchical Bayesian model, provide strong support for the claim
that category contrast is of fundamental importance to categorization.

All code and data will be publicly available after manuscript acceptance
and are available now by request.
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Appendix A Model Fitting Procedures

To ensure that the model parameter fits were not local minima, we used a
hybrid approach of grid search and Nelder-Mead optimization. To create a
grid of joint parameter values, we calculated six evenly spaced points for each
parameter of a model. The minimum and maximum values were set near the
parameter’s boundaries of valid values, when those were finite numbers (e.g.,
0.001 as the minimum if the boundary was zero). The maximum value for all
parameters was 6. Note that in some cases the best-fitting parameter value
was larger than six after optimization. However, exploring values larger than 6
for initializing the parameter for optimization did not improve model fit after
optimization. The minimum value for the specificity parameter α of )PACKER
and copy and tweak models was 10−10. The minimum value target category
and contrast category weighting θt and θc, respectively, was 0. For the conju-
gate hierarchical Bayesian and representativeness models, the minimum values
for the prior mean and variance biases κ and ν were 10−10 and 1 + 10−10,
respectively. Also, the minimum value for the determinism parameter for these
two models was 0.

With the grid of possible parameter intitializations defined, we used Nelder-
Mead method to optimize the log-likelihood of the data set using each set of
parameter initializations. As this was very computationally-intensive, compu-
tation was conducted via distributed computing using UW-Madison’s Center
for High Throughput Computing (Center for High Throughput Computing,
2006).
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Appendix B The Hierarchical Bayesian Model
of Concept Generation

Jern and Kemp (2013) demonstrated how a hierarchical Bayesian model could
explain the distributional correspondences between observed and generated
categories. In their model, exemplars of generated categories were viewed as
samples from a multivariate Normal distribution over the dimensions of stimu-
lus space. The mean of the generated category was independent of the observed
categories, but the covariance matrix (encoding feature variances and correla-
tions) was based on a common prior distribution. Generating a new category
was thus completed by sampling a new category mean (uniform over feature
space) and covariance matrix from the common prior distribution. Because
the shared prior distribution’s parameters were unobserved, the hierarchical
Bayesian approach was used to infer its parameters from the previous cat-
egories (their feature variances and correlations), and then to generate the
covariance matrix of the new category.

In our implementation of their model10, each category’s exemplars are
viewed as samples from a multivariate Normal distribution with parameters
(µ,Σ). Category covariance matrices (specifying variance and covariance along
k-dimensions), are assumed to be Normal-Inverse-Wishart distributed with
parameters: ν (> k− 1), κ (> 0), and ΣD. ν and κ are treated as free param-
eters in our simulations, and ΣD is the domain-wide covariance matrix from
which all categories are viewed as samples. Assuming a given ΣD, a category
covariance matrix Σ can be computed on the basis of its examples:

Σ =

[
ΣDν + C +

κn

κ+ n
(x̄− µ)(x̄− µ)T

]
(ν + n)−1 (B1)

where x̄ and C are the empirical mean and covariance of the category’s
known members, and n is the number of observed members of the category.
When there are fewer than two known members of the category (and thus no
covariance to speak of), Σ = ΣDν.

The category mean, µ, can be computed as:

µ =
κµ0 + nx̄

κ+ n
(B2)

where µ0 is the prior mean. In our simulations, µ0 is set to the center of
the domain. However, when no examples of the target category have been
observed, generation is assumed to be random. In practice, the model’s best
fits are achieved when the κ parameter, which controls the influence of µ0 on
µ, is set very close to zero (hence, the influence of µ0 is minimal).

Importantly, the domain-wide covariance matrix ΣD is unobserved and
needs to be inferred from the observed categories. For conjugacy, if ΣD is
viewed as a sample from an Inverse-Wishart distribution with scale Σ0, ΣD
can be computed as:

10Note that Jern and Kemp (2013)’s model is slightly different, as they used a semi-conjugate
model. Their model acts very similarly to our version.
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ΣD = Σ0 +
∑
y

Cy (B3)

where Σ0 is the prior covariance in the domain. In our simulations, Σ0 = λI,
where λ > 0 is a free parameter controlling the expected variance of dimensions
(dimensions of the domain covariance matrix are expected to be uncorrelated)
and I is a k-by-k identity matrix.

Generated exemplars are drawn from a multivariate Normal distribution
specified by (µ,Σ). Thus, p(y) is

p(y | x) =
exp {θ ·Normal(y; µ,Σ)}∑
i exp {θ ·Normal(yi; µ,Σ)}

(B4)

where θ is a response determinism parameter and Normal(y; µ,Σ) denotes a
multivariate Normal density evaluated at y.
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Appendix C Representativeness Model in
Toroidal Space

Assuming a single bounded feature, we can easily represent the probability
density of a function at any point x on a line as f(x). With a single unbounded
feature, the points x are mapped onto a unit circle with the corresponding f(x)
”wrapped” around the circle. More formally, we can represent the probability
density along a wrapped axis f ′(x) as:

f ′(x) = ...+ f(x− 4π) + f(x− 2π) + f(x) + f(x+ 2π) + f(x+ 4π) + ...

(C5)

=

∞∑
i=−∞

f(x+ 2πi) (C6)

We implement the wrapped axis in the representativeness model when
calculating the multivariate Gaussian components of the representativeness
equation R(x, h) (Equation 4 of the main text). Specifically, the probabil-
ity density of the Gaussian component along a single wrapped axis can be
computed as:

p′(x | h) =

∞∑
i=−∞

p(x+ 2πi | h) (C7)

where p(· | h) represents the probability density of the Gaussian component h
on a line (i.e., not wrapped around a unit circle).

In practice, we can approximate the infinite summation by constraining i
within a limited range (e.g., [−50, 50]). For increased efficiency, we can also
approximate p′(x | h) by stopping the summation once the ratio of the maxi-
mum and minimum values of p(x+ 2πi | h) computed thus far is large enough
(e.g., 10,000). For our modeling exercises here we impose both constraints,
although the first constraint shows some redundancy since we find that i rarely,
if ever, exceeds a value of 4. Given the unimodal nature of the Gaussian distri-
bution, this procedure allows for comparatively efficient approximation of the
wrapped distribution without needing to compute the infinite sum.
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