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Abstract

We examined the behavior of reinforcement-learning al-
gorithms in a set of two-player stochastic games played
on a grid. These games were selected because they in-
clude both cooperative and competitive elements, high-
lighting the importance of adaptive collaboration be-
tween the players. We found that pairs of learners were
surprisingly good at discovering stable mutually bene-
ficial behavior when such behaviors existed. However,
the performance of learners was significantly impacted
by their other-regarding preferences. We found similar
patterns of results in games involving human–human
and human–agent pairs.

The field of reinforcement learning (Sutton and Barto 1998)
is concerned with agents that improve their behavior in se-
quential environments through interaction. One of the best
known and most versatile reinforcement-learning (RL) al-
gorithms is Q-learning (Watkins and Dayan 1992), which
is known to converge to optimal decisions in environments
that can be characterized as Markov decision processes.
Q-learning is best suited for single-agent environments;
nevertheless, it has been applied in multi-agent environ-
ments (Sandholm and Crites 1995; Gomes and Kowalczyk
2009; Wunder, Littman, and Babes 2010), including non-
zero-sum stochastic games, with varying degrees of success.

Nash-Q (Hu and Wellman 2003) is an attempt to adapt
Q-learning to the general-sum setting, but its update rule
is inefficient and it lacks meaningful convergence guaran-
tees (Bowling 2000; Littman 2001). Correlated-Q (Green-
wald and Hall 2003) is an improvement over Nash-Q in that,
in exchange for access to a correlating device, its update rule
is computationally efficient. However, there exist environ-
ments in which correlated-Q also does not converge (Zinke-
vich, Greenwald, and Littman 2005). Minimax-Q (Littman
1994a) converges to provably optimal decisions, but only
in zero-sum Markov games. Likewise, Friend-Q and Foe-
Q (Littman 2001) provably converge, but only to optimal de-
cisions in purely cooperative and purely competitive games,
respectively.

One significant shortcoming of the aforementioned multi-
agent learning algorithms is that they define their updates in
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a way that makes assumptions about their opponents without
actually factoring in their opponents’ observed behavior. In a
sense, they are too stubborn. In contrast, single-agent learn-
ing algorithms like Q-learning are too flexible—they simply
adapt to their opponents without consideration of how their
behavior will impact the opponent. What is lacking in these
existing algorithms is the ability to negotiate a mutually ben-
eficial outcome (Gal et al. 2004).

Algorithms have been designed that seek a best response
against a fixed player and a mutually beneficial response
against like players (Conitzer and Sandholm 2007; Bowl-
ing and Veloso 2002). Others attempt to “lead” a learning
opponent to beneficial behavior (Littman and Stone 2001).
In this work, we return to the investigation of the behavior
of single-agent Q-learning in multi-agent environments.

Ultimately, a major goal for developing machine agents
that act intelligently in multi-agent scenarios is to apply
them to real-world problems. Humans are already agents
that machine agents interact with in some current multi-
agent environments (such as the stock market and online ad-
vertising auctions). Successfully expanding the scope of ap-
plications where multi-agent learning can be applied in the
real world necessitates studying how these agents interact
with human agents. A machine agent that interacts optimally
against other machine agents, but not against human agents,
is not likely to be effective in environments that include hu-
man agents. Further, one major goal of developing machine
agents is for them to solve tasks in collaboration with hu-
man agents. Given the controversial nature of rationality as-
sumptions for human agents (Kahneman, Slovic, and Tver-
sky 1982), a machine agent that plans its collaboration by
assuming the human agent will act rationally (optimally) is
unlikely to be successful in collaborating with the human
agent. Thus, in this paper, we investigate how human agents
interact with each other, and how humans interact with fair
and selfish reinforcement-learning agents.

Our work is inspired by results in behavioral game the-
ory (Camerer 2003), where researchers have explored multi-
agent decision-making in cases where each agent is maxi-
mizing a utility that combines their own objective utility and,
to some lesser extent, other-regarding preferences that pe-
nalize inequity between agents. Our approach goes beyond
earlier attempts to nudge agents toward more cooperative
behavior (Babes, Munoz de Cote, and Littman 2008) and



instead provides a general framework that considers both
objective and subjective rewards (Singh et al. 2010) in the
form of other-regarding preferences. We investigate the be-
havior of this approach in machine-machine and machine-
human interactions. Our main contribution is an exploration
of how incorporating others’ preferences into the agents’
world views in multi-agent decision making improves indi-
vidual performance during the learning phase, leads to de-
sirable, robust policies that are both defensive and fair, and
improves joint-results when interacting with humans, with-
out sacrificing individual performance.

Experimental Testbed
Our experimental testbed included several two-agent grid
games. These games are designed to vary the level of co-
ordination required, while at the same time allowing agents
to defend against uncooperative partners.

A grid game is a game played by two agents on a grid, in
which each agent has a goal. See, for example, Figure 1,
which is a 3×5 grid in which the two agents’ initial po-
sitions are one another’s goals: Orange begins in position
(1,2), Blue’s goal; and Blue begins in position (5,2), Or-
ange’s goal. We refer to grid positions using x-y coordinates,
with (1, 1) as the bottom left position.

One grid-game match proceeds in rounds, and each round
consists of multiple turns. On each turn, the agents choose
one of five actions (north, south, east, west, or wait),
which are then executed simultaneously. In the most basic
setup, agents transition deterministically, and there is no tie-
breaking when two agents collide.1 Instead, if their chosen
actions would result in a collision with one another, neither
agent moves. A round ends when either (or both) players
move into their goal, or when a maximum number of turns
has been taken.

As mentioned above, our grid games are specifically de-
signed to prevent the agents from reaching their goals with-
out coordinating their behavior. Consequently, one approach
is for an agent to cooperate blindly with its opponent by sim-
ply moving out of the opponent’s way, and hoping the op-
ponent then waits for the agent to catch up. However, such
strategies can be exploited by uncooperative ones that pro-
ceed directly to the goal as soon as their path is unobstructed.

To distinguish “unsafe” from “safe” cooperation, we de-
vised a new categorization for strategies in our grid games.
Specifically, we call strategies that allow for cooperation,
while at the same time maintain a defensive position in the
event that the other agent is uncooperative, cooperative de-
fensive strategies. More formally, an agent’s strategy is co-
operative (C) if it is one that allows both it and its opponent
to reach their goals, while an agent’s strategy is defensive
(D) if its opponent does not have a counter-strategy that al-
lows it to reach its goal strictly first. A cooperative defensive
(CD) strategy is both cooperative and defensive.

We now proceed to describe a sample set of grid games,
and equilibria comprised of CD strategies (when they exist),
to illustrate the kinds of interactions we studied. Our first

1It is a simple matter to vary these rules within our infrastruc-
ture, as future experimental design might dictate.

Figure 1: Hallway

Figure 2: Intersection

Figure 3: Door

Figure 4: Long Hall

Figure 5: No Compromise



example, Hallway, is depicted in Figure 1. This game is one
in which the agents can choose to coordinate, for example,
if both agents agree upon a joint strategy where one agent
moves along the top row and the other along the bottom,
without interfering with one another. But, an agent could
choose to “defect” from this joint strategy, by proceeding
straight to its goal. There are CD strategies, however, that
defend against this kind of non-cooperative behavior.

For example, if Orange moves south initially to (1, 3) and
Blue moves west to (4, 2), Orange might choose to return
and remain on its goal until Blue retreats to (4, 3) or (4, 1),
at which point the players are equidistant from their goals,
and both can reach them safely. This joint strategy is an equi-
librium comprised of CD strategies, since Orange and Blue
both remain in positions where they have the ability to block
their opponents until they both have unobstructed equidis-
tant paths to their respective goals.

The grid in Figure 2 (Intersection) requires Blue to defend
against the possibility of Orange behaving uncooperatively,
which it can achieve by squatting on the orange goal. Orange
can then move to (3, 1) where both agents are equidistant
from their goals. Therefore, this game also has an equilib-
rium comprised of CD strategies for both players.

This equilibrium is not the shortest path, however. Purely
cooperative agents in this game could adopt a joint strat-
egy in which Blue moves east, while Orange waits a single
step, before both agents proceed into their goals. This strat-
egy profile is not defensive for Blue though, because it does
not have the opportunity to observe if Orange will cooper-
ate (wait) or defect (go north), and therefore cannot defend
itself if Orange decides to head straight toward its goal.

Figure 3 (Door) is a grid that requires coordination to nav-
igate through the narrow center space at (3, 2). Any equilib-
rium comprised of CD strategies for this grid must be asym-
metric, because it requires one agent to cede to the other
agent the center cell. For example, if Orange chooses to
cede that cell, it should step west into (2, 3) while Blue steps
south into (3, 2). Then, Orange needs to step east back into
(3, 3) to prevent Blue from marching straight into its goal.
Only when Blue agrees to step aside to (2, 2) will they both
be equidistant from their respective goals and in position to
cooperate. This intricate pattern of first giving way to the
opponent, and then forcing them to step around later repre-
sents an equilibrium comprised of CD strategies, since both
agents are able to prohibit their opponent from reaching the
goal first, but still leaves open the possibility for them both
to reach their goals, cooperatively.

In the grid in Figure 4 (Long hall), Blue begins one step
closer to its goal than Orange does. However, Orange can
squat on the blue goal until Blue chooses to cooperate by
taking one step back. If Orange can predict when Blue steps
back, then Orange can take one step closer to its goal while
Blue steps further away, in which case only Orange would
reach its goal. The strategy that minimizes the risk to either
agent requires that Blue wait one turn initially, while Orange
moves toward its goal. These two strategies comprise a CD
equilibrium.

Our last grid, shown in Figure 5 (No compromise), re-
quires not only cooperation, but both agents must also ex-

hibit trust for one another, or both agents cannot arrive at
their goals at the same time. For example, Orange may sit
on Blue’s goal so that Blue can move to (1, 2). Then, Blue
must wait two turns before both agents are equidistant from
the goals. If Blue defects and moves south into (1, 1) while
Orange moves south into (2, 2), Orange still has the opportu-
nity to go back up north to block Blue from reaching its goal.
However, if Blue moves south into (1, 1) when Orange steps
east into (3, 2), Blue will arrive at its goal sooner. Therefore,
a trust spanning multiple rounds is required for the agents to
effectively cooperate in this game.

No equilibrium in CD strategies exists for No Compro-
mise. The game is like Door in that only one player can go
move through the middle cell at a time. Unlike Door, how-
ever, it is not possible for the agents to simultaneously main-
tain a defensive position and to signal cooperation, because
any cooperative move leads to an asymmetric situation in
which the agents are no longer equidistant from their goals.
As a result, after one agent cooperates, there is always an
incentive for the other agent to defect, and there is nothing
the cooperative agent can do to defend itself. Note however,
that if Orange sits on the blue goal while Blue walks to (1, 1)
and then Blue cooperates by waiting for Orange to walk to
(1, 3), Blue’s policy is CD. Still, Orange cannot respond in
kind with a CD strategy; the aforementioned strategy is C.

Taking these five grid games as an initial testbed, we per-
formed three studies: the first involved simulations of arti-
ficial agents playing against one another; the second pitted
humans against other humans on Mechanical Turk; and the
third, paired humans with artificial agents, also on Mechan-
ical Turk. The remainder of this paper describes the results
of these studies.

Machine-Machine Experiments
We carried out a set of simulation experiments with Q-
learning in the grid games presented. For each grid game,
we conducted 50 independent runs in which two Q-learners
faced off. The agents’ value functions were optimistically
initialized with a value of 40 for all states and they used
Boltzmann exploration with a temperature of 0.5. The dis-
count factor was set to 0.9, and the learning rate to 0.01.
To ensure that the state space was adequately explored,
any state that is reachable from the initial state had some
probability of being selected as the starting position for a
round. Once either agent reached its goal (or 100 moves
were taken), the round was terminated. There were no step
costs beyond discounting, and rewards were 50 for reaching
a goal.

We denote the outcome of a round using a pair of letters,
where G means the agent reached the goal and N means the
agent did not reach the goal. The first letter in the pair rep-
resents the agent’s own outcome and the second represents
its opponent’s outcome. For example, GN is used to denote
that the agent reaches its goal while its opponent does not.

As two Q-learning algorithms are not guaranteed to con-
verge in self-play, we arbitrarily stopped the learning after
30,000 rounds, and checked the strategies learned. In spite
of Q-learning not explicitly seeking outcomes with high so-



cial welfare, it very reliably identified cooperative strategies
leading to GG outcomes.

Only the No Compromise game posed a challenge to the
Q-learners. There, they tended to thrash about, finding a pair
of strategies that work well together only to eventually dis-
cover that one of the agents has an opportunity to defect. The
defection is destabilizing, so a new search begins for strate-
gies that work well together. This result is not altogether un-
surprising, because No Compromise is the only game in our
testbed that does not possess a pair of CD strategies that con-
stitute a Nash equilibrium.

In a second set of Q-learning experiments, we examined
the impact of endowing agents with other-regarding pref-
erences. That is, their rewards no longer depend solely on
their own successes and failures—their objective rewards—
but depend also on those of other agents in the environment
as well. Standard reinforcement-learning agents, such as a
Q-learning agent, seek to optimize their own objective re-
ward signal—we call this preference the “selfish” preference
because these agents are only concerned with their own out-
comes.

When an agent has other-regarding preferences, however,
it believes that this quantity is its true payoff. Previous
work has shown, perhaps counterintuitively, that optimizing
something other than the objective reward can sometimes
lead agents to be more effective in their acquisition of the
objective reward itself (Singh, Lewis, and Barto 2009). In-
deed, we reach this same conclusion in our experiments.

Considering the four different outcomes in these games—
GG, GN, NG, NN—there are 75 different possible prefer-
ence orderings (allowing for ties). The selfish ordering that
ignores the opponent’s outcome is one of these orderings:
GG∼GN�NG∼NN. Nine of the 75 orderings are consis-
tent with the selfish ordering, strictly preferring Gx to Nx for
all x, and we are interested in which ordering leads agents to
acquire the highest objective reward.

Of particular interest here is the fair preference, which
we define as the objective reward of the agent minus 25%
of the difference between its own and the opponent’s ob-
jective rewards: rs = ra − 0.25 |ra − ro| , where rs is the
agent’s reward including its other-regarding preference, ra is
the agent’s objective reward, and ro is the opponent’s objec-
tive reward.2 By incorporating this fairness term, the agent
strictly prefers the following ordering: GG � GN � NN �
NG. That is, the agent prefers making it to its goal as op-
posed to not, but it additionally prefers that the opponent
only get to its goal if the agent itself does as well. To say it
another way, a fair agent wants its opponent to win with it or
lose with it.

Figure 6 shows the result of the selfish and fair agents
playing against others of the same type in each of our test
grid games. Of the nine orderings, only three (all variations
of the fair preference ordering) achieve consistent coopera-
tion in self play across all five grid games. Consequently, fair
agents obtain higher total objective rewards than others. We
also ran all nine preference orderings against one another.
The average scores (across both players) in games involv-

2Other percentages would achieve the same result.

Figure 6: Average score in self play after 30,000 rounds.

ing a fair agent tend to be higher than the average scores in
games not involving a fair agent.

We also analyzed the types of strategies learned by fair
and selfish Q-learners after multiple simulations of various
configurations. Interestingly, we found that Q-learners with
fair preferences tend to find CD strategies more often, espe-
cially when paired with selfish agents.

In summary, Q-learners naturally learn to cooperate in
the grid games studied, discovering equilibria comprised
of CD strategies when they exist. Cooperation can be in-
duced in other games by manipulating the Q-learners’ other-
regarding preferences to value the success of others.

In the remainder of this paper, we describe analogous ex-
periments conducted with humans playing grid games. In
those experiments as well, we were able to manipulate the
rewards to favor fairness, and doing so induced more coop-
eration than otherwise.

Human–Human Experiments
We ran two studies in which human subjects played grid
games. In the first, we recruited participants on Mechanical
Turk to play the Hallway game against another Turker.

A total of 40 human participants were recruited via Ama-
zon Mechanical Turk and were randomly paired (20 pairs)
with one another to play as one of the participants in the
Hallway game (Figure 1).3

Each participant began with an instruction phase that used
a series of practice grids to teach them the rules of the
game: arrow keys to move north, south, east, or west in the
grid; spacebar to wait; both participants move simultane-
ously; when two participants try to enter the same square,
their moves fail; and the round ends when either partici-
pant reaches a goal. Example grids demonstrated outcomes
in which both participants reached a goal, and outcomes
in which one did and the other did not. All transitions (in-
cluding transitions that did not involve changing location)
were animated so that participants could see that their ac-
tions registered. The instruction phase can be viewed at
http://goo.gl/SWme3n.

3One pair was not included in the analysis due to a technical
error.



Figure 7: Human behavior in Hallway: The plot shows one
point per pair, which represents the number of times at least
one of the two participants scored.

After the instruction phase, the participants were paired
up. Each pair played a match consisting of 20 rounds, which
ended when either or both participants reached a goal, or
when they had taken 30 actions without either reaching a
goal. Participants received $2.00 as a base payment and a
bonus of $0.10 for each round in which they reached their
goal, regardless of whether the participant also reached their
goal.

Participants were told they were playing against some
other Turker.

An interface to view the actions taken by each pair of par-
ticipants (and their feedback about the experiment) is avail-
able at http://goo.gl/25IR5V. Figure 7 summarizes
this information in a single plot, which depicts a point for
each pair that represents the number of rounds in which at
least one of those two participants scored.

The plot shows a rich heterogeneity of behaviors. We
broadly classified the outcomes into one of four patterns:
trust (5/19), where participants reached their goals in nearly
every round; alternation (5/19), where participants reached
their goals on every second round (letting the other partici-
pant reach their goal in alternating rounds); surrender (3/19),
where one participant reached their goal most rounds and the
other participant tended to just get out of the way; and other
(6/19), where some other pattern occurred (the majority of
which were one participant reaching their goal most rounds
and the other participant reaching their goal in about half of
the remaining rounds).

Contrary to the Q-learning self-play results where all pairs
converged to a cooperative strategy, only about one quarter
of the human pairs behaved cooperatively. We propose two
possible (and not mutually exclusive) hypotheses to explain
this difference: (1) Our Q-learning agents were given 30,000
rounds to cooperate, whereas human pairs only interacted
for 20 rounds, and (2) the learning strategies typically em-
ployed by humans do not tend to result in cooperation in this

environment.
To better understand whether human agents could be in-

duced to cooperate more reliably, and to understand what
happens when a learning agent is paired with a person, we
ran a follow up study in which people were paired with
reinforcement-learning agents.

Machine–Human Experiments
Our first study on Mechanical Turk investigated pairwise
interactions between human subjects, revealing a range of
different outcomes. Our second study investigated the be-
havior of human subjects in Hallway when pitted against
reinforcement-learning agents. The goal of this latter study
was to investigate how human behavior might be influ-
enced by the other-regarding preferences of a reinforcement-
learning agent.

The experiment consisted of 19 participants who played
against an agent, that is, a machine. The participants were
told only that they were playing against another agent. The
instruction phase was otherwise identical to the previous ex-
periment.

There were two treatments in this study, defined by the
two types reinforcement-learning agents, which differed in
their subjective reward functions. Some were fair, while oth-
ers were selfish. Given its reward function, an agent used
value iteration to generate a policy against its current esti-
mate of the human’s policy. The humans’ policies were es-
timated simply by counting the number of times an action
was taken at each state. The estimated policy was then, at
each state, an action with the maximal count.

In the selfish-opponent treatment (n = 9), the subject
played against an agent with the objective reward function.
In the fair-opponent treatment (n = 10), participants played
against an agent with the fair other-regarding preferences.
As in the human–human study, each participant was paid
a $2.00 base pay and an additional $0.10 each time they
reached the goal. They played a total of 20 rounds that each
lasted up to 30 actions each. A viewer for the results is avail-
able at http://goo.gl/nXm6IL.

In line with our predictions, differences in other-regarding
preferences led to differences in participant performance. In
particular, fair-opponent subjects scored significantly more
than selfish-opponent subjects (t(9.0) = 2.37, p < 0.05).
Similarly, fair-opponent subjects tended to score consis-
tently higher in objective reward than selfish-opponent sub-
jects across the experiment (Figure 8). The agents them-
selves scored similarly between the two treatments.

Using a similar classification scheme as in the human–
human experiments, we found that games played by selfish-
opponent subjects resulted in trust (5/9), surrender (1/9), and
other (3/9). In contrast, games played by fair-opponent sub-
jects resulted consistently in trust (10/10).

Broadly speaking, the interactions between the humans
and reinforcement-learning agents were either high in coop-
eration (many shared goals) and low in conflict (few colli-
sions), or low in cooperation and high in conflict. Figure 9
plots the total number of shared goals against the number of
collisions, averaged over all 20 rounds, and depicts two large
clusters corresponding to these two types of interactions.



Figure 8: The impact of agent strategy on human–machine match ups in Hallway.

Figure 9: Average “collisions” (turns where both agents at-
tempt to move to the same square) plotted against total num-
ber of shared goals in the Human–Machine experiment.

The first type of interaction suggests the emergence of a
norm that does not require either agent to explicitly defend
against the other, which implies that the agents had estab-
lished some form of trust (top-left of Figure 9). The second
one corresponds to a failure to agree on a joint policy that
seamlessly allows both agents to reach their goals (bottom-
right of Figure 9).

However, while the fair-opponent subjects overall tend to
have more shared goals, the treatments split relatively evenly
between the two clusters of interactions described.

Conclusions
In this work, we showed that introducing other-regarding
preferences that favor fairness to reinforcement-learning al-
gorithms can generate agents that have three positive qual-
ities. They obtain higher rewards during the learning phase
(Figure 6). When trained against a selfish learner, they are
more likely to find CD strategies, guaranteeing a high level
of objective reward against any future opponent and encour-
aging cooperation (Figure 9). And, they can improve the ob-
jective rewards of humans without decreasing their own ob-
jective reward (Figure 8).

Other multi-agent learning algorithms like Coco-
Q (Sodomka et al. 2013) and Friend-Q (Littman 1994b)
could also be used to promote cooperation, but will not
behave as well when faced with an uncooperative opponent.
In contrast, Q-learning, with other-regarding preferences
that were different from but consistent with the objective
rewards, is able to adapt its behavior to its observed
opponent.

Q-learning, even when given useful other-regarding pref-
erences, takes many thousands of interactions to converge
to stable high-reward behavior. Our Amazon Mechanical
Turk results showed that humans are able to converge to
cooperative behavior much more quickly, resulting in high
reward for all players. We showed that a model-based ap-
proach that explicitly estimates its opponent’s policy could
be endowed with other-regarding preferences and are able
to quickly converge to high-reward behavior on timescales
comparable to people. Further, these agents are able to con-
verge to mutually beneficial behavior when interacting with
people.

Ideally, we want communities of agents to discover, from
experience, which other-regarding preferences are most ap-
propriate to adopt within their population to achieve high ob-
jective reward. Future work will investigate how to address
this challenge. One solution might be to incorporate “ex-
pert” algorithms (Crandall 2014; Megiddo and Farias 2005),
which abstract the learning problem from learning about in-
dividual state-action pairs to learning which high-level strat-
egy from a set of strategies to perform. In our problem, these
strategies could be the set of strategies induced by different
other-regarding preferences.

We reported on experiments involving (repeated) grid
games played among humans, programs, and mixtures of
humans and programs. As cooperation and “defection” are
both aspects of our grid games, they naturally bear strong
resemblances to the Prisoners’ Dilemma. In numerous ex-
perimental studies of the repeated Prisoner’s Dilemma, re-
searchers find that people cooperate more often than game
theory would predict (Camerer 2003). Possible reasons for
this behavior include an overall preference for cooperation
when one can determine that his/her opponent is also willing
to reliably cooperate.



As in Prisoners’ Dilemma experiments, our human exper-
iments revealed a mix of behaviors, some of which were
cooperative, and others which were not. Perhaps more in-
teresting still is the fact that there was a clear distinction in
behavior among the humans who played against the agents:
humans whose agent opponents were fair were able to iden-
tify and exploit this condition readily. In future, more exten-
sive, experiments, we intend to query the participants to try
to determine whether or not they were interested in and/or
able to identify one-another as cooperative. People who per-
ceive machines as more predictable and having a preference
for joint goal attainment might be more inclined to trust ma-
chines in joint tasks. This outcome would foster human–
machine cooperation and could enable large increases in
productivity by having machines share some of the work-
load in tasks that require more than one agent, one of whom
is human.
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