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a b s t r a c t

Mobile web browsing is highly recurrent, in that a large proportion of user's page requests are to a small
set of websites. Despite this, most mobile browsers do not provide an efficient means for revisiting sites.
Although significant research exists on prediction in the personal computer realm, little work has been
done in the mobile realm where physical constraints of the device and mobile browsing behaviors are
vastly different. The current research proposes a Bayesian model approach, based on a cognitive model
of memory retrieval that integrates multiple cues in order to predict the next site a user will visit. These
cues include frequency of site visitation, the recency of site visitation, and the context in which specific
sites are accessed. The model is assessed using previously collected web logs from 24 iPhone users over
the course of one year. Our model outperforms simpler models based on frequency or recency, which are
sometimes implemented in desktop browsers. Potential applications of the model are discussed with the
objective of increasing browsing efficiency on mobile devices.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Previous research has revealed strong regularities in the way
people retrieve information on the web. Statistical patterns underlie
the number of links a user follows within a webpage (Huberman
et al., 1998), how often people revisit webpages (Tauscher and
Greenberg, 1997), and how people select links on a webpage (Fu
and Pirolli, 2007). An understanding of patterns in web browsing
behavior can be useful for developing a more efficient browsing
experience. Indeed, models of web browsing behavior on personal
computers (PCs) have been used to provide more personalized user
support for revisits to web pages (Obendorf et al., 2007), optimize
caching (Yang and Zhang, 2003), and improve search (White and
Drucker, 2007). These improvements may attenuate usability pro-
blems such as page loading delays, once labeled as the primary
usability problem for the web on the PC (Sears et al., 1997).

Now, smartphones allow users to access the web anywhere
without having to retreat to a PC. While many websites are
optimized for viewing and interaction on smaller mobile devices,
smartphones have noted usability problems with page loading

delays (Tossell et al., 2012a; Oulasvirta et al., 2005) similar to those
faced by PC users in the 1990s. Even the simplest and most
common tasks are significantly less efficient than the same tasks
performed on PCs (Tossell et al., 2010).

The goal of the current study is to develop and assess predictive
models of web use on iPhones in order to attenuate problematic
page loading delays. A logs-based approach is used to collect real
usage data from iPhone users “in the wild” over the period of one
year. These data are modeled using a technique applied to both
human cognitive processes and information foraging that
leverages context and usage history. The fit of these models is
examined to assess the utility of the predictive technique for
providing a more efficient, personalized browsing experience.

2. Background

Early research characterizing web surfing behavior on PCs has
found that over half of all page requests were to previously visited
pages (Tauscher and Greenberg, 1997; Catledge and Pitkow, 1995;
Cockburn and McKenzie, 2001). Despite this recurrent nature, web
browsers are not always optimized for accessing previously visited
material. While tools such as bookmarks and history lists are designed
to facilitate revisitation, these methods are often inefficient. These
lists can easily become cluttered or outdated, which may result in low
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usage (Aula et al., 2005). History lists are used only by a small fraction
of users (Tauscher and Greenberg, 1997) and though bookmark usage
is more common, many users express frustration at the need to keep
them organized (Abrams et al., 1998).

The problems associated with bookmarks and history lists have
led users to adopt alternative strategies for revisiting websites,
such as e-mailing URLs to themselves or searching Google with
appropriate keywords (Aula et al., 2005). One might suspect that
with an increase in high-bandwidth internet connections over the
past decade, a web search may in fact be an efficient method for
revisiting pages. However, even this may be problematic in some
circumstances, particularly with inexperienced users. In 2010, for
instance, many users voiced their outrage over Facebook's new
layout after trying to access the site from a Google search for
“facebook login.” In fact, what users thought was the “new Face-
book” was actually a blog article about Facebook which had
topped the list of search results (Melanson, 2010).

Revisiting websites on a smartphone is typically less efficient
than on a PC due to the nature of smartphone usability. Although
many web sites provide mobile-optimized versions of their site,
navigation can still be difficult. Limited screen real estate means
users must scroll and zoom to find information, and often
encounter slow page loading delays over mobile networks. While
there is still a significant revisitation rate on mobile phones,
reliance on browser features such as bookmarks is uncommon
(Tossell et al., 2012a), perhaps because the user interface for
accessing bookmarks is more cumbersome than on a PC. Again,
users often rely on Google searches to revisit sites—even for those
sites which a user visits most frequently (Tossell et al., 2012a).
With considerably longer page loading delays over mobile net-
works, this strategy is much less efficient than on a PC. Other
strategies, such as directly typing in a URL, are also considerably
slower on mobile phones (Sauro, 2010). It appears that there are
currently very few options for users to quickly access previously
visited material on a smartphone. This is especially problematic
given that mobile phones are sometimes used in short intervals
compared to desktop computers (Cui and Roto, 2008), and brief
interactions account for up to a third of smartphone sessions
(Oulasvirta et al., 2012).

Mobile research has sought to mitigate these usability defi-
ciencies through the exploitation of cross-device web usage and
context. For example, Kane et al. (2009) found 75% of sites visited
on users PCs are also accessed on their associated mobile device.
History lists on users PCs can be shared with their mobile devices
for quicker retrieval on-the-go. A few lines of research have
focused on the use of context to enhance application usage (see
Baldauf et al., 2007; Chen and Kotz, 2000 for reviews). Some of
these examples are rather mundane: exploiting temporal context
(e.g., time of day) to prompt a reminder from the calendar
application. Other examples are more novel: leveraging location-
based information and activity recognition to generate recom-
mended points of interest, tourist info, and train schedules on an
application (de Pessemier et al., 2014). However, context is often
overlooked in models of web site revisitation.

We propose a Bayesian method to integrating multiple cues in
order to predict the next site a user will visit. This approach is
based on a cognitive model of memory retrieval (Anderson and
Schooler, 1991; Anderson and Lebiere, 1998) that has since been
applied to other information retrieval systems (e.g., Stanley and
Byrne, 2013). Pitkow (1997) has previously noted the relevance of
this model to information retrieval on the web. The current
research extends this work by formally testing this model on a
real-world dataset, while also incorporating additional contextual
cues (Anderson et al., 2004).

Tauscher and Greenberg (1997) proposed several methods for
ordering history lists on a PC, including simple methods such as

ordering by frequency or recency of page visits. These methods
were evaluated on their ability to predict future website revisita-
tion, and thus help users quickly access previously visited material.
These methods provide a useful benchmark to assess more
complex models of website revisitation.

Other models of website revisitation have been proposed in the
literature (e.g., Fitchett and Cockburn, 2012), and several modern web
browsers already include an algorithm for predicting revisitation. For
example, Mozilla Firefox uses an algorithm called frecency, a port-
manteau of frequency and recency, which offers page suggestions on
new tabs and URL predictions when users type in the address bar
(Connor et al., 2010). An additional algorithm has been proposed by
the Mozilla team to replace the frecency algorithm (Ruderman, 2014).
We test both of these models on our data set to offer representative
comparisons to our approach.

Unlike many previous studies, the current research focuses on
predicting revisitation to sites (i.e., domains and sub-domains)
rather than individual pages. This approach has been found to be
more suitable given the increasingly ephemeral nature of the web.
Indeed, Weinreich et al. (2008) examined PC-based web logs and
found that a large proportion of web events were accessing
dynamic pages and web applications. In the latter, URLs are often
not informative at later time points: URLs are frequently generated
dynamically, the content of these pages change frequently over
time, and revisits may redirect to a home page or log-in screen. In
the mobile space, the amount of visits to dynamic pages and web
applications is exacerbated (Tossell et al., 2012a). Search has
become more fundamental to mobile web usage relative to
browsing (Church et al., 2007). Tossell (2012) found that search
activities consumed over 30% of all web usage. As opposed to PC
searches, mobile searching is often triggered by contextual factors
(Teevan et al., 2011). The revisitation rate to pages has decreased
significantly over time (Zhang and Zhao, 2011), from 58% in 1997
(Tauscher and Greenberg, 1997) to 46% for desktop usage ten years
later (Obendorf et al., 2007) to 25–35% on mobile phones (Kane
et al., 2009; Tossell et al., 2012a). Conversely, site revisitation rates
have increased, from 70% for desktop browsing (Obendorf et al.,
2007) to as high as 90% for smartphone browsing (Tossell et al.,
2012a). Based on these findings, researchers have recommended
pointing users to top-level sites to access dynamic content within
those sites.

3. Methods

A field study was conducted as part of a larger evaluation of
Internet use on smartphones. Data were collected using the
LiveLab software (Shepard et al., 2010). More complete details
about the current dataset are available in Tossell et al. (2012a). A
short review of the methodology is reported below for conve-
nience. An anonymized copy of the dataset is available at URL
http://livelab.recg.rice.edu/.1

3.1. Participants

Twenty-four students (14 males, 10 females; mean age 19.2
years old) were recruited to participate in a longitudinal study on
smartphone usability. Participants were not paid, but instead given
an iPhone 3GS running iOS 3.1.3 to use as their primary phone.
Participants were allowed to keep the phone at the completion of
the study, which lasted one year.

1 Due to a technical error, one user's data contains 12 fewer URLs than the
dataset used in this study.
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3.2. Procedure

A logger installed on these iPhones ran as a background process
during the study period. It did not interrupt usage or require user
activity in order to record data. Instead, the logger automatically
uploaded usage data to a server on a daily basis. The participants
were not given any instructions on how they use their instru-
mented devices. The logger automatically hashed communications
data. Thus, privacy was maintained in the collection of SMS, voice
phone, and e-mail data allowing users to interact with their
devices more naturally (Tossell et al., 2012). An informed consent
document explained exactly what data were collected by the
logger and was signed by each participant in this study.

The focus of this study is solely on the web logs collected from the
Safari web browser. The custom logger captured user interactions on
the web by accessing the history file once per day. Data collected from
URL visits included the date and time of each URL visit, the name of
the URL visited, and the referring URL. Client-side data such as the
buttons selected to access the URLs (e.g., frequency of back arrow
pushes) was not collected due to technical restrictions in the Safari
application. Similarly, the method used to access the page (manual
text entry, link click, bookmark) was not recorded.

One important technical note regards the way Safari logs web
history. When a user re-visits a web page, Safari increments a
frequency counter but only preserves the timestamp for the most
recent visit to that site. Since log data was collected nightly, if a
user visits the same page multiple times in a day, timing data is
lost for all but the most recent visit. By comparing the count entry
to the number of available temporal data, we calculated that
roughly 5–6% of the data was missing in timestamps. We have
excluded this portion of the data from further analysis. As a result,
the data do not represent an entirely veridical representation of
the user's browsing history. However, we do not have reason to
believe that this biases one model over another.

4. Model overview

A variety of cues can be used to predict which website a user
will visit next. These cues can be classified into two groups:
contextual cues and historical cues. Contextual cues reflect the
current state of the user and the device. For example, physical
location is a contextual cue because a user's browsing habits may
differ when he is at work or home. In contrast, historical cues
reflect a user's past browsing history. For example, the frequency
or recency with which a site is visited would be considered
historical cues.

We present results from seven models. Three baseline models
leverage only a single cue. These are the Recency, Frequency, and
Context models. Three additional models integrate both frequency
and recency in making predictions. The Frecency model (Connor
et al., 2010) is based on the algorithm implemented in Mozilla
Firefox, and the New Frecency model (Ruderman, 2014) is another
algorithm proposed by Mozilla. We use these as benchmarks to
compare our proposed History model, which borrows an algo-
rithm from cognitive psychology (Anderson et al., 2004) and is
described below. Finally we test a History/Context model which
augments the History model by incorporating a limited amount of
context.

4.1. Proposed model

Determining which site a user will visit next can be framed in
terms of Bayesian inference: given a site's prior visitation history
and the likelihood of visiting that site in the current context, how
likely is it that the user will visit that site next? The solution to this

problem can be determined through Bayes’ rule:

PðSi jHi \ CÞ ¼ PðC jSi \ HiÞPðSi jHiÞ
PðC jHiÞ

ð1Þ

In Eq. (1), PðSi jHi \ CÞ represents the probability that a parti-
cular website Si is visited next, given the current context C, and the
site's visitation history Hi. Though it is often more convenient to
work with the equivalent log odds version of Eq. (1):

ln
PðSi jHi \ CÞ
Pð:Si jHi \ CÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

O

¼ ln
PðC jSi \ HiÞ
PðC j:Si \ HiÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

C

þ ln
PðSi jHiÞ
Pð:Si jHiÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

H

ð2Þ

For convenience, we refer to different portions of this equation
as the odds term (O), the context term (C), and the history term
(H). Given this formulation, the site which has the highest
probability of being visited next is that which has the highest
posterior odds. Thus, to find the website Si that is most likely to be
visited next, we can select the maximum a posteriori (MAP) over
all i:

arg max
Si

ln
PðSi jHi \ CÞ
Pð:Si jHi \ CÞ ð3Þ

The difficulty in this problem lies in the characterization of
visitation history (Hi) and the current context (C). For instance,
visitation history might be operationalized as frequency of visits to
a site, or recency of visits to a site, or some combination of the two.
Likewise, the current context might include the page the user is
currently on and the current physical location of the device (GPS
coordinates). We will consider some of these characterizations in
sequence, but first it is useful to define some commonalities
between the potential models we will be comparing.

4.2. Model commonalities

Below we describe a set of models used to predict which
website a user will visit next. All models were evaluated by
analyzing log files and did not intervene with the user's behavior.

At each site transition, the models predict the top four sites that
the user is most likely to visit next (i.e., the four sites with the
largest posterior odds). A site transition is defined as moving from
one domain or sub-domain to another. As such, transitions within
a site (e.g., navigating from one Wikipedia page to another) are
ignored by the model: no prediction is made, and the frequency
count for that site is not increased. Intra-site navigation is ignored
specifically because no click effort is saved by a predictive model
when the user is searching for a link on the current page.
Additionally, a user's current site (the site currently loaded
in the browser) is always excluded from the list of predictions. If
the current site has a posterior odds in the top four, it is replaced
by the next most likely site such that four predictions are
always made.

Prediction accuracy is defined as the percentage of time that
one of the four predicted sites was in fact the next site visited.
Prediction accuracy is calculated individually for each user and
then averaged across users to calculate model accuracy. Later, we
examine how model performance is affected by the number of
predictions made, e.g., predicting two sites instead of four.

5. Results

5.1. Overview

An overview is presented in Fig. 1 and details regarding each
model are reported in the sections below.
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We tested three baselines which incorporate only a single cue
(Recency, Frequency, and Context). We found that the most recently
visited site (context model) is the least predictive cue, whereas
frequency and recency provide substantially better predictive accu-
racy. We also test three models which integrate both frequency and
recency (History, Freceny, and New Frecency). Our proposed model,
the History model, statistically outperforms the other two and
achieves 44.4% accuracy. Finally, we test a model which incorporates
frequency, recency, and context, and found that this model is able to
successfully boost performance, achieving 48.9% accuracy.

In total, 42,724 unique pages (i.e., full URLs) were recorded in
the log. The number of unique pages per user ranged from 112 to
4948 (median: 1511). 58,021 page transitions were logged, ranging
from 120 to 5701 per user (median: 1854). This results in roughly
an average of 26% revisitation rate per user.

4724 unique sites (i.e., domains) were recorded in the log. The
number of unique sites per user ranged from 37 to 671 (median:
235). The number of inter-site transitions totaled 26,345, ranging
from 59 to 2934 per user (median: 939). This results in a site
revisitation rate of over 80% per user on average.

Users relied on search heavily, issuing over 17,500 searches
across the entire study period. 56% of browsing sessions (defined
as activity between when a browser is opened until it is closed)
consisted of at least one search.

5.2. Frequency model

One of the simplest models we can test is a frequency model, in
which the four most frequently visited sites are predicted each
time the user visits a new site. Context is ignored, and thus the
model is simplified to:

O¼H ð4Þ
Here, our characterization of H assumes that only frequency

information is important, and thus any other information related
to a site's visitation history, including temporal information, is
ignored.

Overall, this model does a decent job of predicting the next site
the user will visit. On average, 39.6% the sites visited by the user
are correctly predicted by the model.

5.3. Recency model

Another baseline model that we can test is a recency model. In
this case, the four most recently visited sites are predicted. This

characterization ignores frequency information and context. In
this case, however, our characterization of H now reflects the
recency of visits rather than the frequency of visits.

The accuracy of this model is slightly worse than the frequency
model, predicting 38.2% of site transitions. A paired t-test compar-
ing the accuracy of recency and frequency models for all 24
subjects suggests that the frequency model may be favorable to
the recency model, however a two-tailed test does not quite reach
significance, tð23Þ ¼ 1:88; p¼ :07.

5.4. Context model

In addition to historical cues such as recency and frequency,
mobile browsing behavior may be influenced by a variety of
contextual cues. Possible contextual cues include the user's cur-
rent location, time of day, or the most recently-visited site. We
focus on only one contextual cue which we felt would be most
predictive: the most recently-visited site. Previous research has
indicated that this cue is a reliable indicator of website revisitation
(Pitkow and Pirolli, 1999; Su et al., 2000).

To establish the effect of context, we first look at a model which
incorporates context but ignores prior history. That is:

O¼C ð5Þ
In this case, C can be computed using the user's visitation

history up until the current point. Formally, C is equal to the log
odds of arriving at Si from C as opposed to arriving at :Si from C.

Overall, the context model performs relatively poorly, achiev-
ing an average of only 19.9% accuracy. This demonstrates that this
contextual cue is likely to account for less of the variance than
history when predicting site visitation. However, if the successful
predictions made by the context model are different than (or only
partially overlap with) the successful predictions made by histor-
ical cues, it is possible that we can increase prediction accuracy by
examining the full model established in Eq. (2).

5.5. History model

A better characterization ofH should take into account not only
frequency of visitations, but also the recency of each visit. The
form that this function should take is not obvious; however, this
problem has been addressed before within the information retrie-
val literature. Anderson and Schooler (1991) noted two important
characteristics present in many informational systems. First, the
odds that a particular piece of information will be needed in the
future decays as a power function of the time since it last
appeared. Second, the odds that a particular piece of information
will be needed in the future increases as a power function of how
many times it has appeared in the past. These patterns have been
observed in a variety of systems such as library book loans (Burrell,
1980), e-mail content (Anderson and Schooler, 1991), and human
memory (Anderson et al., 2004). These two observations can be
captured in a single equation where the odds of needing a piece of
information is represented as a linear summation of odds from all
previous presentations:

O¼ ln
Xn

j ¼ 1

tðSij Þ�d ð6Þ

The right-hand side of Eq. (6) captures the aforementioned
observations. The odds of needing a particular item Si increases
with the number of observations n, as designated by the summa-
tion. However, the contribution of each observation decays as a
power function since the time elapsed since that observation, tðSijÞ.
The parameter d is a free parameter that represents the rate of
decay, and later we examine how model performance changes as a

Fig. 1. Each box plot represents the distribution of predictive accuracies across 24
subjects for each model type. For each model, four predictions are generated
ðN ¼ 4Þ.
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function of this decay rate. For an initial analysis, we set d to .5, as
this decay rate has been used often to model a wide range of
phenomenon related to the accessibility of human memory
(Anderson, 2007).

Pitkow (1997) has previously shown that both the frequency
and recency of web page revisitation can be characterized by
power distributions. However, while Pitkow characterizes fre-
quency and recency of revisitation as following power distribu-
tions, the fit of a model which integrates these observations (i.e.,
Eq. (6)) was not assessed.

In our model, the log odds of visiting each site are recomputed
using Eq. (6) after each visitation. The time tðSijÞ is calculated as the
amount of time that has passed since that particular visit. Thus,
the computed odds reflect the sum of all temporally discounted
visits to that site. For now, context is still ignored. Once again, only
the characterization of H has changed.

This model achieves an average prediction accuracy of 44.4%,
which is statistically better than the frequency model,
tð23Þ ¼ 8:27; po :001. In fact, the prediction accuracy of the History
model is equal to or better than the prediction accuracy of the
frequency and recency models for all 24 subjects in the dataset.

As seen for a sample user in Fig. 2, the distribution of posterior
log odds in this model roughly follows a power distribution. It is
apparent that only a few sites have very high odds, whereas there
is a long tail of sites with low odds.

5.6. History/context model

Now that we have characterized both visitation history ðHÞ and
context ðCÞ, we are in a position to test the History/Context model
using Eq. (2). Though the History model achieves good predictive
accuracy, the addition of context may improve it further. In
particular, those sites in the long tail of the History model
(Fig. 2) are unlikely to be predicted by the history model, yet
may be predicted by the context model. A model that incorporates
both historical and contextual cues could compensate for this.

One complication is that the numerator of the context term of
Eq. (2) is sometimes zero, because a user has never transitioned
from C to Si. This presents a problem in the current model, where
the log of each term must be computed to integrate the context
and history terms, since the log of zero is undefined. To remedy
this, a Laplace correction was used by adding .01 to the numerator

and denominator. Thus if a site Si has never been visited from C, it
is implicitly assumed that the base rate probability of this transi-
tion is :01=ðNþ :01Þwhere N is the number of prior visits to Si. Note
that in the context model, a Laplace correction can be avoided by
simply not taking the logarithm, which does not affect rank
ordering. However in the History/Context model it is necessary
to take the log in order to integrate the history and context terms
of the model.

The History/Context model results in an average prediction
accuracy of 48.9%, which is statistically better than the History
model, tð23Þ ¼ 6:43;po :001. For 22 of 24 users, the History/
Context model performs equal to or better than all other models
that were tested.

5.7. Frecency model

While the History model appears to perform well on our data
set, comparisons to the Recency and Frequency models should be
interpreted cautiously. Several modern web browsers include
algorithms for ranking web sites that are not strictly recency- or
frequency-based. One such algorithm is the Frecency algorithm
(Connor et al., 2010), implemented in Mozilla's Firefox.

As with the History model, a site's score is represented by the
temporally discounted sum of all visits to that site. However
instead of using a power function, the algorithm uses a step-
function to assign weights based on the recency of each visit.
Specifically, visits are separated into one of the five discrete bins
which determine its weight (see Table 1).

In Mozilla's implementation, each visit's weight is multiplied
by a bonus score that is determined by how the site was accessed;
e.g., a URL that was typed receives a bonus of 2, whereas URLs that
are clicked as links receive a bonus of 1.2. A site's value is
determined by the sum over all visits:

Scorei ¼
Xn

j ¼ 1

bonusjn weightj ð7Þ

This model shares many similarities to the History model. Notably,
it integrates both recency and frequency, and decays in a sub-
exponential manner. Unfortunately, our logs did not contain enough
information to compute the bonus score for each visit, as we did not
record method of access. Instead, we tested a simplified version of the
model in which a constant bonus score was used for all visits, as has
been suggested elsewhere (Fitchett and Cockburn, 2012).

The Frecency algorithm results in an average prediction accu-
racy of 42.1%. This algorithm is directly comparable to the History
model in that it incorporates recency and frequency, but not
context. The History model achieved higher prediction accuracy,
and outperformed the Frecency model for 22 of 24 subjects,
tð23Þ ¼ 6:65; po :001.

5.8. New frecency model

Finally, we test an alternative Frecency algorithm proposed by a
member of the Mozilla Firefox team (Ruderman, 2014). The proposed
algorithm abandons the binning structure in favor of a continuous

Fig. 2. The distribution of posterior log odds for each site is shown for a sample
participant. Each circle represents a site in the user's data log. Only a few sites have
very high odds because they have been accessed both recently and frequently. Odds
shown are those calculated at the very end of the dataset.

Table 1
Frecency bins.

Time Weight

0–4 days 100
4–14 days 70
14–31 days 50
31–90 days 30
90þ days 10
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exponential decay model. While an exponential decay function may
have some computational advantages, the choice is at odds with
previous literature showing that website revisitation is better char-
acterized by power-law decay (Pitkow, 1997; Dezsö et al., 2006), as are
similar information retrieval systems (Burrell, 1980; Anderson and
Schooler, 1991; Adamic and Huberman, 2002).

The relationship is governed by the following equation:

Scorei ¼
Xn

j ¼ 1

bonusjn e�λtðSijÞ ð8Þ

where

λ¼ ln2
30 days

ð9Þ

Again, we did not have enough information to calculate the
bonus score for each visitation and thus weighted each visitation
equally. This algorithm results in an average prediction accuracy of
42.4%, slightly higher than the original Frecency algorithm. How-
ever, the History model outperforms the New Frecency model,
achieving higher prediction accuracy for 22 of 24 subjects.

6. Summary

Seven different models for predicting website revisitation were
tested and compared. The prediction accuracies of each model are
shown in Fig. 1. A limited context model, which takes into account
only site to site transitions, fares relatively poorly, whereas models
that incorporate historical cues offer better predictive accuracy.
Three models incorporate frequency and recency. Our History
model outperforms reduced versions of the Frecency model used
in Firefox, as well as a potential replacement for Frecency. The
History/Context model is the only model to incorporate all three
suggested cues, and achieves the highest level of predictive
accuracy while maintaining relatively low variance among 24
subjects. This suggests that the model can perform robustly across
users regardless of individual differences in web surfing behavior.

6.1. Reduced assumptions

Up until now, we have only examined the prediction accuracy
of each model under the assumption that the top four sites are
counted as successful predictions. Fig. 3 shows how model
performance changes as a function of the number of predictions

made by the model. By definition, increasing the number of
predictions increases model accuracy. However in all models, this
increase appears to be non-linear. Each successive prediction
offers only a modest increase in predictive accuracy.

One additional assumption we made concerning the History
and History/Context models is an arbitrary setting of the decay
weight (d). Though we chose a value consistent with what has
been used in previous research, this value is likely to vary
depending on the domain of interest. Fig. 4 demonstrates that
prediction accuracy is marginally affected by the choice of decay
rate, though accuracy remains high across a range of possible
decay values.

7. Discussion

The History/Context model reviewed here provides a simple
and well-established Bayesian framework for integrating contex-
tual and historical cues to predict website revisitation. To account
for historical cues, we implemented an algorithm used in cognitive
psychology (Anderson and Schooler, 1991) and demonstrate its
effectiveness in predicting website revisitation.

7.1. Additional cues

Of the models we tested, only a single contextual cue is tested: the
most recently visited site. It is very likely that additional cues that we
did not test include could improve the fit of the model. For instance,
Rahmati et al. (2012) highlight the importance of contextual relevance
of web browsing. Additional cues such as time of the day (morning,
afternoon, evening), day of the week (weekend, weekday), and
physical location may also influence web browsing behavior.

Mozilla's Frecency algorithm includes information regarding
method of accessing a URL (e.g., typed, bookmark, click, etc.)
which seems particularly well suited for reducing click effort.
Additional mobile cues might include the most recent voice call or
most recent app used.

In our model, we explored only a limited amount of cues to
establish the effectiveness of integrating history and frequency
using a specific algorithm, and incorporated a single contextual
cue to validate the potential for easily including additional cues.
Incorporating more cues in a similar manner is likely to produce
modest increases in predictive accuracy at the cost of model

Fig. 3. The accuracy of each model type is depicted as a function of the number of
predictions, N.

Fig. 4. The decay rate parameter (d) affects the prediction accuracy of the History
and History/Context models. However, both models perform robustly across a
range of decay rates.
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complexity. The challenge in incorporating additional cues lies in
discretizing them in a way that allows us for computing condi-
tional probabilities (i.e., binning).

The History/Context model reviewed here performs well in
spite of the fact that it has only two parameters: a decay rate and a
Laplace correction. In our initial analysis both of these parameters
were fixed, though subsequent analysis shows model performance
is relatively stable across different decay rates. Model performance
is also unlikely to vary significantly with such a small Laplace
correction value. Additional parameters might be considered, such
as a weighting parameter for context and history; currently these
cues are weighted equally (as suggested by a naive Bayes model). If
these parameters are computed for each user individually, the
model's performance may improve by accounting for individual
differences in web surfing behavior.

7.2. Storage and performance concerns

One concern is that the History and History/Context models
leverage a user's entire web history to generate predictions. This
may not always be possible for a variety of reasons, including
performance, storage, or privacy concerns. Indeed, performance
appears to be a factor in designing the Frecency algorithm, presum-
ably for performing online prediction in Firefox's address bar
(Ruderman, 2014). One possible alteration to the History/Context
model is to use an approximation to Eq. (6) that has been used in the
cognitive science literature (Anderson et al., 1998; Anderson, 1993),
which requires keeping track of the total number of visits to a
particular site but only a timestamp for the most distant visit. This
approximation works by assuming visitations are evenly spaced from
the first visitation to the current time. This approximation signifi-
cantly reduces the computational cost, and also reduces the size of
the log file. However, this approximation is occasionally inadequate
for some domains (Sims and Gray, 2004; Stanley and Byrne, 2014).
Another approximation exists which can trade-off fidelity of the
original equation with the computational ease of its approximation
with a free parameter (Petrov, 2006). For the current data set, the
total number of site presentations was sufficiently small that perfor-
mance and storage issues were not a concern.

Another alternative when timestamps are not available is to use
only the temporal ordering of the sites; that is, measure time using
the discrete number of sites since a particular visitation. Our
results show that this change reduces the prediction accuracy of
the models modestly, to 42.9% for the History model and 47.1% for
the History/Context Model.

7.3. Possible implementations

A predictive model can be implemented in a variety of ways.
One useful technique may be to provide users with a springboard
—a list of sites or thumbnails that the user is most likely to visit
next—upon opening the browser or a new tab. This technique is
used in some PC browsers, such as Google Chrome. Teevan et al.
(2009) have shown that providing visual snippets of previously
visited sites can efficiently support revisitation to web pages.
Other use cases may include ordering websites in the URL entry
box when the user prepares to manually type a URL; predictive ad
placement, wherein ads are chosen based on where the user is
most likely to visit next; or pre-caching pages which have a high
probability of being visited, thus improving page load times (such
as in Lymberopoulos et al., 2012).

7.4. Limitations

Our choice in methodology has several limitations. In relying
strictly on web logs, user behavior may already be biased in certain

ways based on the infrastructure of the phone and browser. For
instance, Safari has an autocomplete feature that saves users effort
when typing in a URL; the list and ordering of suggestions may
actually affect which site the user visits next. Additionally, many
popular websites provide a native app which can be used in place of
the website. Thus, for example, a user may no longer wish to visit
http://www.facebook.com once she installs the Facebook app.
Although these limitations are inherent, the web logs do reflect a
subject's natural usage of the browser. That is, while features such as
autocomplete may bias user behavior, these features are unlikely to
be removed. Web logs provide a good characterization of how users
navigate the web when taking into account these biases. Nonetheless,
it is important to actively re-assess the model's predictive perfor-
mance after making substantive changes to the user interface or other
components that may alter the user's browsing behavior.

Our results may also appear optimistically biased, due to our
choice to predict site revisitation rather than page revisitation. Our
choice was motivated largely by the observation that site revisita-
tion on mobile phones is very high and page revisitation is fairly
low. The growing adoption of web applications with dynamic URLs
may have affected this. In general, an algorithm which only makes
page-to-page predictions would fail to make any prediction at all
when the active page is being visited for the first time. Consider
the situation in which a user frequently transitions from booking a
flight to booking a hotel. The URL for a flight's booking confirma-
tion is unique and does not have much future importance. Like-
wise, the details of a particular hotel booked in the past are not
particularly important. Yet the association between the flight
booking website and the hotel booking website is captured by
an algorithm which predicts site-to-site transitions. Conversely,
there are other situations in which pages are more important than
sites. For instance, a user may frequently navigate between specific
pages in a technical manual. Here a model that predicts only site-
to-site transitions will fail.

An intriguing possibility is to integrate site and page predic-
tions by determining which pages are fairly static in nature (e.g.,
Wikipedia pages), and future research should explore methods for
integrating site and page prediction. Alternatively, there may be
other use cases in which site-to-site transitions are uniquely
practical or valuable. For example, a tree-like navigation structure
in which potential sites are suggested to a user first followed by
page suggestions after a user makes an initial selection allows for
completely keyboard-less navigation so long as the user is revisit-
ing a previous page. In another use case, predictive ad placement
may benefit more from site-to-site predictions when advertisers
want users re-directed to a top level page.

8. Conclusion

Navigating the web on mobile phones presents unique chal-
lenges which lead to an inadequate browsing experience. Mobile
users visit fewer sites overall compared to desktop users, yet they
revisit sites with great regularity. These patterns suggest that
perhaps predicting web site revisitation can improve the user
experience. A Bayesian algorithm borrowed from the memory
retrieval literature shows promising results in being able to predict
a significant portion of revisitation on mobile phones.
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