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Abstract
One popular and classic theory of how the mind encodes knowledge is an associative semantic network, where concepts and
associations between concepts correspond to nodes and edges, respectively. A major issue in semantic network research is
that there is no consensus among researchers as to the best method for estimating the network of an individual or group.
We propose a novel method (U-INVITE) for estimating semantic networks from semantic fluency data (listing items from a
category) based on a censored random walk model of memory retrieval. We compare this method to several other methods
in the literature for estimating networks from semantic fluency data. In simulations, we find that U-INVITE can recover
semantic networks with low error rates given only a moderate amount of data. U-INVITE is the only known method derived
from a psychologically plausible process model of memory retrieval and one of two known methods that we found to
be consistent estimators of this process: if semantic memory retrieval is consistent with this process, the procedure will
eventually estimate the true network (given enough data). We conduct the first exploration of different methods for estimating
psychologically valid semantic networks by comparing people’s similarity judgments of edges estimated by each network
estimation method. To encourage best practices, we discuss the merits of each network estimation technique, provide a flow
chart that assists with choosing an appropriate method, and supply code for others to employ these techniques on their own
data.
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Introduction

How do people encode, store, and retrieve knowledge? Psy-
chologists have examined memory retrieval using different
tasks as a means of understanding mental representation
(Tulving 1972). Using different methodologies, researchers
have explored how concepts are organized within a special-
ized type of memory, known as semantic memory (Quil-
lan 1966). Although significant progress has been made,
placing constraints on models of semantic memory, basic
questions concerning the nature of mental representation in
semantic memory remain unresolved (Griffiths et al. 2007;
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Johnson-Laird et al. 2015; Jones et al. 1984, in press;
Tversky 1977; Tversky and Hutchinson 1986).

Researchers have proposed different, plausible represen-
tations for semantic memory. One popular type of repre-
sentation is a spatial representation, which represents each
concept as a point in Euclidean space. Similarity of con-
cepts (and other psychological functions) are estimated
from the distance between the two corresponding points
(Attneave 1950). Advances in computing power, mathemat-
ical tools, and our psychological understanding of memory
have resulted in more sophisticated spatial models of mem-
ory in recent decades (e.g., Jones and Mewhort 2007;
Landauer and Dumais 1997). Spatial models are grounded
in psychological theories, such as the Bayesian framework
for generalization (Shepard 1987; Tenenbaum and Griffiths
2001).

Spatial models are used often in psychology, though
frequently the decision to use this semantic representation
is motivated by convenience, rather than psychological
validity. In many ways, this is a reasonable choice: the
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underlying computational components of many spatial
model estimation techniques (such as multidimensional
scaling) are well understood and widely used, making
interpretation of these models attractive (Kruskal and Wish
1978; Shepard 1964, 1980).

In addition, the research community has created best
practices (Davison et al. 2010), tools, and code for
estimating semantic spaces in a domain (e.g., Busing
et al. 1997; Dennis 2007) which has resulted in their
widespread use. Semantic spaces can be derived from a
variety of data sources, including semantic fluency data
(Chan et al. 1993), text corpora (Landauer and Dumais
1997), paired similarity ratings (Dry and Storms 2009),
and triadic comparisons (Lee et al. 2016), making spatial
representations broadly applicable. Regardless of the input
data source or the particular spatial model employed, the
basic principle remains: semantic concepts are represented
by points in multidimensional space, and association
strength is designated by the distance between two points.

In parallel, semantic networks have been proposed as
an alternative to spatial memory representations (Collins
and Loftus 1975; De Deyne and Storms 2008; Sattath
and Tversky 1977; Steyvers and Tenenbaum 2005). Unlike
spatial models, semantic networks represent semantic
memory as a structured network in which concepts (nodes)
are connected to semantically similar concepts by edges.1

With recent computational advances in network science
(Albert and Barabási 2002; Watts 2004), there has been a
resurgence of interest and use of semantic networks in the
study of semantic memory (Baronchelli et al. 2013; Falk and
Bassett 2017).

Across the semantic network literature, there is little
consistency in how the semantic networks of individuals or
groups are estimated. Arguably, the most common approach
is to estimate group-level networks from free association
data, in which a large group of participants are given a set
of cue words and are asked to respond with the first word
that comes to mind. A network is formed by connecting
each cue-response pair with an edge. As a result, networks
generated from free association data will include a set of
experimenter selected cue words.

The free association task places few constraints on
participant responses, which can make it difficult to infer
category-level semantic networks (e.g., one that contains

1Formally, there may exist a function that converts between equivalent
semantic spaces and networks (Anderson 1978). However, the choice
of representation will usually be psychologically important. For
instance, one representation may provide a more efficient coding
than another. Likewise, different representations may require different
retrieval processes to reproduce the same human data. That is,
though the two representations may encode the same information, the
parsimony and psychological plausibility of the representations may
differ (Jones et al. 2015).

only animals) from the data. Often, responses to cue words
are semantically related but span categories (e.g., “paw”
as a response to “dog”). However, responses may also be
semantically unrelated (De Deyne and Storms 2008), such
as word completions (“fish” as a response to “star”) or
rhymes (“yarn” as a response to “barn”). Since responses
are largely unconstrained, it can take a substantial amount of
free association data to estimate a category-level semantic
network. This is especially true for generating individual-
level networks (see Morais et al. 2013).

To estimate the semantic organization of a particular
domain in an efficient manner, many researchers have
begun to use semantic fluency data to estimate group-
level networks. In the semantic fluency task (Bousfield and
Sedgewick 1944; Henley 1969), participants generate as
many items from a given category as they can in a fixed
period of time (e.g., “list as many animals as you can in
three minutes”). A characteristic pattern seen in semantic
fluency data is clustered responses: participants tend to
list semantically similar items in close proximity to each
other (Gruenewald and Lockhead 1980; Troyer et al. 1997).
For example, a participant may list the animals “dog, cat,
hamster” in sequence because all of these animals belong
to a common sub-category pets. This tendency to cluster
items together tells us something about how concepts in a
category are mentally organized. For example, in the animal
category, sequences tend to be clustered based on a common
environment (e.g., household pets, African animals) and
taxonomy (e.g., canine, amphibians) more so than other
possible relations such as visual features (e.g., red animals,
small animals) or causal relations (e.g., predator-prey).

Responses that frequently occur near each other (across
many fluency lists) are likely to be semantically related, and
a semantic network can be constructed from these inferred
associations. To date, however, there are no best practices
for how a researcher should estimate networks from
fluency data, no easy tools for estimating networks from
fluency data, no empirical evaluation of network estimation
techniques, and no methods derived from psychological
models of the task. The goal of this article is to take a step
towards addressing these gaps in our current understanding
of how to estimate semantic networks from fluency data.

One process that generates clustered responses and
mimics semantic fluency data is a random walk on a
semantic network (Abbott et al. 2015; Goñi et al. 2010;
Zemla and Austerweil 2017). In this article, we develop and
validate a novel method for estimating semantic networks
that reflects this process. Our model assumes that fluency
data is generated by a censored random walk on a semantic
network and estimates the most likely network to have
generated these data. Building on a related technique (Jun
et al. 2015), we call this model U-INVITE (Unweighted
Initial Visit Emitting random walk).
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We validate this model in two ways. First, we show
that an artificial network can be efficiently recovered from
simulated fluency data generated by a censored random
walk. Second, we compare how networks estimated by
U-INVITE from human semantic fluency data compared
to networks estimated by other methods using the same
fluency data. We generate seven semantic networks
for the animal category using seven techniques: U-
INVITE, a hierarchical Bayesian version of U-INVITE
designed to capture individual variation appropriately,
Pathfinder Networks (PN), Community Networks (CN),
Naı̈ve Random Walk (NRW) networks, First Edge (FE)
networks, and Correlation-Based Networks (CBN). We
then evaluate the semantic similarity of edges in each
network using a separate group of participants who
rated the similarity of animal pairs. We conclude with
a discussion of advantages and disadvantages of each
network estimation technique, and we provide a flow chart
(Fig. 10) to help researchers choose a network estimation
technique that is most appropriate for their research
goals.

The goal of this article is to advance our theoretical and
practical understanding of methods for estimating semantic
networks from human fluency data and propose best
practices. We do not attempt to adjudicate whether semantic
spaces or networks are better representations of semantic
memory. Techniques for estimating semantic spaces are
relatively mature and have been theoretical and empirically
validated. In contrast, we have little understanding of the
theoretical and empirical validity of methods for estimating
semantic networks. Without a reliable understanding of how
to estimate semantic networks, the debate between semantic
spaces or networks will remain unanswerable; there will
always remain a lingering question as to whether the
method used to estimate a semantic network is appropriate,
muddying any comparison between semantic networks
and spatial models. The results and conclusions of this
article are steps towards providing the necessary theoretical
and empirical understanding of techniques for estimating
semantic networks.

Semantic Networks

A semantic network is a representation of memory that
describes the organization of declarative facts and knowl-
edge in the mind. A network consists of a set of nodes and
a set of edges. Each node in the network denotes a con-
cept in semantic memory, such as fish or purple. Edges in a
network are used to connect a pair of nodes that are seman-
tically similar. For example, an edge might connect plane
and car because both are vehicles. The set of nodes directly
connected to a node by an edge are called its neighbors.

Often, the semantic networks used in psychology are
agnostic as to the specific semantic relation between
nodes that edges denote. Some possible semantic relations
include causal relations (e.g., Causes(moon, tides)), featural
similarity (e.g., Similar Color(sky, water)), subordinate or
superordinate relations (e.g, Is A(oak,tree)), or temporal co-
occurrence (e.g., Precedes(Rain, Lightning)). While some
semantic networks make the relation type between nodes
explicit (e.g., Stella et al. 2017), many leave it implicit (e.g.,
Steyvers and Tenenbaum 2005).

While the only essential features of a semantic network
are a set of nodes and a set of edges, many networks have
additional features. For example, edges in a network can
be directed or undirected. A directed edge can be used
to indicate that a semantic relation is not symmetric; for
instance edges can be used to describe category membership
(e.g., a directed edge may indicate a hammer is a type of
tool, but not vice versa). Edges may also be weighted or
unweighted to denote the strength of similarity between two
concepts. For example, ketchup and mustard are strongly
related (both are condiments) and might have a high edge
weight, while ketchup and taco are weakly related (both are
foods) and might have a low edge weight.

Alternatively, some aspects of directionality and weight-
edness can be implicitly coded in the network structure,
rather than explicitly defined. For example, fruit may have
many neighbors, whereas apple may have relatively few. As
such, simple models of lexical retrieval based on spread-
ing activation or random walks would generally predict
that fruit should be primed more when given apple than
vice versa. Similarly, random walk models of retrieval pre-
dict asymmetry in path lengths between two nodes, without
having the need to explicitly assign parameters related to
edge weight and direction. So, it is possible for unweighted,
undirected networks with a simple retrieval process to cap-
ture some asymmetries in priming and similarity rating that
are typically used to argue for the necessity of weighted,
directed networks. An in-depth analysis is needed to assess
whether weighted, directed networks are needed to capture
human semantic retrieval and judgments.

Regardless of whether this information is coded directly
in the representation, Goñi et al. (2011) notes that inter-
rater agreement of category boundaries (i.e., whether two
items are part of the same category) is quite high. That
is, even if similarity in a semantic network is graded,
people share similar intuitions about how similar two
items must be to considered semantically similar. As such,
semantic networks that are unweighted or undirected are not
necessarily incompatible with an analogous network that is
weighted and directed.

When estimating networks from semantic fluency data,
it may be preferable to estimate unweighted and undirected
networks. Estimating directionality and weightedness in a
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network can vastly increase the number of parameters of
the network. This makes network estimation difficult when
data is sparse, which is typical of semantic fluency data.
Estimating networks from a small amount of data can lead
to noisy parameter estimation. For instance, Jun et al. (2015)
estimates undirected, weighted networks from fluency data
but typically performs poorly with small data sets (e.g., less
than 100 lists). Additionally, the networks estimated by Jun
et al. (2015) are fully connected (in which all node pairs
are connected by a weighted edge), which are not typical of
those used in psychology, and bear some resemblance to a
low-dimensional spatial model.

Semantic networks are often defined in part by their
topology. Much of the early research in semantic networks
neither proposed nor identified any particular network
topology as being necessary for representing semantic
memory (Collins and Loftus 1975), though recent work
has identified that network topology is critical to modeling
behavior in memory retrieval tasks. Semantic networks
tend to be small-world like (Morais et al. 2013; Steyvers
and Tenenbaum 2005) and/or scale-free (De Deyne and
Storms 2008; Steyvers and Tenenbaum 2005). In a small-
world network, a small number of “hub” nodes have a
very large number of neighbors, while most nodes in the
network have a small number of neighbors. This topology
allows rapid retrieval of information within a network
with minimal wiring costs (i.e., relative few edges; Bassett
and Bullmore 2006). A network’s topology has important
implications for how information is retrieved. For most
proposed retrieval processes, a network’s topology can have
a dramatic influence on the way memory is searched (i.e.,
the order in which concepts are explored) and the time
needed to locate information within a network.

Semantic Fluency Task

A popular way to estimate semantic networks for a domain
of interest is using the semantic fluency task (e.g., Goñi et al.
2011). In the semantic fluency task, participants are asked
to name as many items from a given category (e.g., animals,
tools, foods) as they can in a fixed length of time (usually
one to three minutes). Participants are allowed to report
items at any level of abstraction, such as the basic-level (e.g.,
dog) or subordinate-level (e.g., poodle). Participants are told
not to repeat themselves, but usually given no guidance
beyond this.

In the traditional paradigm, each participant generates
only a single fluency list. However, in a variation called the
repeated fluency task (Zemla et al. 2016), each participant
performs the task multiple times, generating several fluency
lists from the same category. Items can be repeated from list
to list, but participants are still told to avoid repeating an

item within a single list. In the repeated fluency task, one
or more filler tasks is included in between lists to minimize
repetitions and sequences resulting from list memory and
recency effects. The filler task may be a semantic fluency
task for a different category, or a completely unrelated
task. Alternatively, repeated fluency data can be collected
longitudinally, collecting lists from a single participant
every few weeks (or longer).

Data from the semantic fluency task show stereotypical
patterns. Healthy participants are generally good at avoiding
intrusions (listing non-category items) and perseverations
(repetitions) within a list, although the task is also widely
used with patients who have semantic memory deficits,
who tend to have intrusions and perseverations (Shindler
et al. 1984). Participants also show typicality effects, in
which common or prototypical category members—such as
dog of the category animals—are reported more often and
earlier than non-typical category members, such as aardvark
(Quaranta et al. 2016).

Another hallmark pattern of semantic fluency data is
clustering: participants tend to list sequences of items that
belong to a common cluster (i.e., a sequence of pets when
listing animals). Further, participants show a tendency to
switch clusters at theoretically optimal times (Hills et al.
2012), consistent with the marginal value theorem from
the optimal foraging literature (Charnov 1976). Consistent
with this theory, participants are able to quickly list items
when they begin a new cluster. However, when the time
needed to retrieve the next item in that cluster exceeds the
global average time needed to to retrieve a new category
item (of any cluster), participants tend to switch to a new
cluster—the optimal time to switch.

These patterns have been taken as evidence indicating
that the mental representation for categories such as animals
is patchy: semantically, similar clusters of animals are stored
nearby in mental space. An ongoing debate surrounds what
semantic representation and retrieval process best explains
these patterns. Traditionally, semantic fluency data has been
explained as the result of a two-stage retrieval process,
where participants switch between a global cue (e.g.,
animals) and local cue (e.g., pets) in a spatial representation
when searching for category members (Hills et al. 2012).
However, it has also been shown that semantic fluency
data can be explained by a single-stage retrieval process
on a different semantic representation: a censored random
walk on a semantic network (Abbott et al. 2015). Under
this model, fluency data is generated by traversing edges
at random in a semantic network. When a novel item is
traversed, it is output (i.e., added to the fluency list). When
the same item is traversed a subsequent time, the item is
censored (i.e., not added to the fluency list).

The semantic networks used by Abbott et al. (2015) were
pre-defined by the researchers (they showed two sensible
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networks both produced patchy behavior). How should a
researcher choose one semantic network or another? To
investigate this question, we evaluate different network
estimation methods given fluency lists of animals. Psychol-
ogists have studied human knowledge representation for
animals extensively, making it an ideal candidate for eval-
uating different techniques. In the next section, we discuss
different methods for estimating a semantic network for a
domain.

PreviousWork: Estimating Semantic
Networks

Several approaches have been used previously to estimate
semantic network representations from psychological data
or corpora. One method for constructing a semantic network
relies on structured databases. For example, a network can
be formed by connecting synonyms in a thesaurus (Steyvers
and Tenenbaum 2005); connecting related words in a lexical
database such as WordNet (Miller 1995; Steyvers and
Tenenbaum 2005); or using a network formed by hyperlinks
in an interactive encyclopedia such as Wikipedia (Navigli
and Ponzetto 2012). These databases have been tailored
with human oversight. Another method for constructing
networks is to analyze a large text corpus. For instance, one
can estimate which concepts are related by counting word
co-occurrences in an article, or using other related natural
language processing techniques (Masucci et al. 2011).

Another approach to constructing semantic networks is
to use psychological data from behavioral experiments in
which participants retrieve items from memory or perform
similarity judgments. In particular, the free association task
is used frequently to construct networks (De Deyne and
Storms 2008; Morais et al. 2013; Nelson et al. 2004). In the
free association task, participants are given a cue word and
asked to respond with the first word that comes to mind.
For instance, if the cue word is dog, a participant might
respond with cat or wolf. Typically, only a single response
is solicited for each cue word, though soliciting multiple
responses can result in more rich networks (De Deyne and
Storms 2008). A network is constructed by forming an edge
between each cue and response pair. Although this remains
a useful method, it is unrestrained. Responses can (and do)
cross category boundaries (e.g., an acceptable response to
dog is bone), which can result in very broad networks. As a
result, it can require a very large number of responses and
participants to estimate a category representation (e.g., an
animal semantic network), and the resultant network may
underestimate the density of within-category associations.
In addition, the set of cue words chosen by the experimenter
can bias the content and topology of the network.

Aside from the free association task, the semantic
fluency task is another widely used paradigm for collecting
psychological data used to infer semantic networks. One
reason for this is that it enables a researcher to focus on
a particular category of interest. In the sections below,
we describe several computational methods for estimating
networks from fluency data.

First Edge

The First Edge (FE) method (Abrahao et al. 2013; Jun et al.
2015) estimates a network by inferring a single edge from
each fluency list. The first and second response generated
in each list are connected by an edge; the rest of the list is
discarded and not used for inference.

Because the First Edge method estimates only a
single edge from each list, it is not an efficient means
of constructing semantic networks from fluency data.
However, because the first pair of items in a fluency list
is often strongly related, the model provides an important
benchmark to compare with other methods. In addition, the
First Edge method is a statistically consistent estimator of a
semantic network from fluency data assumed to have been
generated by the censored random walk. This means that
given enough fluency lists generated by a censored random
walk, the First Edge method will recover the true network.

Naı̈ve RandomWalk (NRW) and ThresholdingModels

The Naı̈ve Random Walk (Jun et al. 2015; Lerner et al.
2009) estimates a network under the assumption that each
fluency list is generated by an uncensored random walk on
a semantic network. That is, it assumes every time a node is
traversed in the random walk, the node appears as a response
in the fluency list, on both the first traversal of that node and
on subsequent traversals. An edge is inferred between each
pair of adjacent items in each fluency list. Because adjacent
items are typically more similar than non-adjacent items,
the Naı̈ve Random Walk is a quick and effective method for
estimating a semantic network.

A major limitation of the Naı̈ve Random Walk is that
edges are inferred in a binary fashion. A single co-
occurrence of two items is sufficient to infer an edge in the
network, and no amount of additional data will reject that
edge. As such, the Naı̈ve Random Walk can be efficient and
effective when given a very small number of lists but is not
effective at constructing networks from large amounts of
data. Under the assumption that all possible item pairs can
appear in fluency data, the Naı̈ve Random Walk will result
in a network that is fully connected when given enough data.

Often, there are some adjacent pairs of items in fluency
data that are not semantically similar, either by chance or
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because they span a cluster switch boundary. One method
for pruning these edges is to apply a threshold procedure
to a network constructed using a Naı̈ve Random Walk
(Lerner et al. 2009). A threshold model generalizes the
Naı̈ve Random Walk model by estimating an edge between
any adjacent pair of items in a fluency list if that pair
appears more than a fixed number of times (Tn) or fixed
proportion of times (Tp) across all fluency lists. Higher
threshold values result in sparser networks (fewer edges)
whose edges typically reflect stronger similarity than edges
inferred with lower thresholds.

Community Network

The Community Network (CN) approach (Goñi et al. 2011)
extends the threshold model by providing a principled
approach for filtering out spurious edges that emerge from
large data sets. Unlike First Edge and Naı̈ve Random Walk,
the Community Network also allows inference of edges
between non-adjacent items.

The Community Network method estimates a semantic
network using a co-occurrence matrix C that has been
generated from a set of fluency lists, where Cij usually
denotes the number of times items i and j appear within
a span of w responses across all fluency lists. w is free
parameter that denotes a window size (see Fig. 1). As the
window size w is increased, the method can infer edges
between items that appear further apart within a fluency
list. The Community Network infers an edge between
any pair of items i and j when Cij co-occurrences are
significantly unlikely to occur by chance alone, given the
total number of fluency lists M and the frequency fi of
an item i in the data set. Because it is difficult to reliably
estimate significance with a low number of co-occurrences,
a lower-bound threshold Tn is sometimes applied to the
co-occurrence matrix. For each pair of items i and j ,

Cij =

⎧
⎪⎪⎨

⎪⎪⎩

# of times i and j co-occur if # of co-occurences>Tn,
within window w across
all lists

0 otherwise

(1)

where Tn is typically 1. In other words, for an edge to be
inferred between a pair of items, the pair must co-occur

Fig. 1 Co-occurrences are calculated by how many times two items
appear within an arbitrary window size w. Here, lion co-occurs with
dog, cat, tiger, and elephant, but not wolf or giraffe

within window w more than once. The probability of two
items i and j occurring in the same list within window size
w by chance alone is given by:

P linked
ij = P list

ij P
(<W)
ij (2)

where P list
ij is the probability of i and j appearing in the

same list:

P list
ij = fifj

M2
(3)

and P
(<w)
ij is the probability of i and j appearing within

window size w:

P
(<w)
ij = 2

l(l − 1)

(

wl − w(w + 1)

2

)

(4)

where l is the mean length of the fluency lists. See Goñi
et al. (2011) for more details.

For each pair of items i and j in the data, a binomial 95%
confidence interval is computed using the Clopper-Pearson
exact method (Clopper and Pearson 1934) given the number
of fluency lists M and the number of co-occurrences Cij . An
edge is inferred for any item pair when P linked

ij is less than
the lower bound of the confidence interval, indicating the
number of observed co-occurrences is greater than expected
from chance alone. The size of this confidence interval can
be adjusted to control the sparsity of the network; wider
confidence intervals generate sparser networks but whose
edges are likely to have greater semantic similarity.

Following Goñi et al. (2011), we use a threshold Tn of 1
and a window size w of 2 in the simulations below.

Pathfinder Network

Paulsen et al. (1996) propose one of the earliest methods
for constructing semantic networks from fluency data.
Following Chan et al. (1993),2 they define a distance metric
used to measure the similarity between any pair of items
in a set of fluency lists. In contrast to many of the other
techniques presented here, the Pathfinder method defines a
distance score for every pair of items in the data set that
decreases as two items appear closer together in a list and
as they co-occur across multiple lists (indicating stronger
semantic similarity). That is, there is no explicit restriction
on how near two items must appear in a fluency list for them
to be connected with an edge in a network.

2Chan et al. (1993) initially introduced the equations in this section
for deriving a proximity matrix from fluency data, but they do not
use Pathfinder to estimate semantic networks as we construe them.
Conversely, Chan et al. (1995b) uses Pathfinder to estimate semantic
networks from a proximity matrix, but use triadic comparison data
rather than semantic fluency data to build a proximity matrix. To the
best of our knowledge, Paulsen et al. (1996) are the first to perform
both steps of this procedure.
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They define

Dij = M

M2
ij

Mij∑

k=1

dijk

Nk

(5)

where:

Dij is the computed distance between items i and j

dijk is the distance between items i and j in list k

(i.e., the number of items between i and j for list k,
plus one)

Nk is the total number of items in list k

Mij is the total number of lists that contain both items i

and j

M is the total number of lists

Following this procedure for every pair of responses in
the data set yields an N by N proximity matrix, where
N denotes the number of unique responses in the data
set. Paulsen et al. (1996) construct a semantic network
from this matrix using the Pathfinder method for generating
unweighted, undirected networks from proximity matrices
(Schvaneveldt 1990; Schvaneveldt et al. 1989).

In a Pathfinder network, only the path with the shortest
distance between every pair of nodes in the proximity
matrix is preserved.3 The path with the shortest distance
between nodes i and j may not contain a direct edge
between i and j . Rather, a path between intermediary
nodes may traverse the network with a shorter distance.
A Pathfinder network is constrained by two parameters,
q and r . q constrains the maximum number of steps that
can occur in the shortest path between two nodes. When
q = N − 1 there are no constraints on the maximum
path length connecting two nodes. When calculating path
lengths, the Minkowski distance between two nodes is used
(a generalization of Euclidean and Manhattan distance),
parameterized by exponent r . When r = 1, the Minkowski
distance is identical to Manhattan distance, or the sum of all
path segment lengths. When r = ∞, the distance metric is
identical to Chebyshev distance, in which a path length is
equal to the largest of those path segment lengths.

q and r are free parameters that influence the density of
the network. As either parameter is increased, the density
of the estimated network is decreased. When q = N − 1
and r = ∞ (as in Chan et al. 1995b; Razani et al. 2010),
Pathfinder extracts the sparsest possible network (i.e., the
fewest number of edges) from the proximity data. Other
parameterizations can extract the densest possible network

3Sometimes, two items do not co-occur in any list and thus the distance
between them is infinite or undefined. In these cases, an edge between
the two items is omitted. It is not clear from the literature if this is
standard practice.

(e.g., Chan et al. 1995a) or something in between (e.g.,
Vinogradov et al. 2003).

We implement the Pathfinder estimation technique with
parameters q = N − 1 and r = ∞ to extract the spars-
est possible network from the data. This parameterization is
computationally efficient compared to other parameteriza-
tions, and corresponds to the union of all minimum spanning
trees (Quirin et al. 2008). A minimum spanning tree is a set
of edges that connects all items in a network (N) while min-
imizing the total distance (i.e.,

∑
i,j Dij ) of all edges in the

network.

Correlation-Based Networks

Another method for constructing networks estimates edges
between items based on how many lists the items co-occur
in, regardless of their relative positions in that list (Borodkin
et al. 2016; Kenett et al. 2013). Initially, an M by N matrix
F is constructed, where M indicates the total number of lists
and N indicates the total number of unique items produced
in those lists. Each cell Fij in the matrix takes on a binary
value of 1 or 0 to indicate whether item i appeared in list j .
Thus, the sum of the values in F is equal to the total number
of responses given (excluding perseverations).

Pairwise Pearson correlations are computed for each
column pair (i.e., each possible pair of items). A high
correlation indicates that two items are likely to co-occur
within any given list. The set of all item pairs, representing
all possible edges in the network, are sorted by their
correlations from high to low. A semantic network is
constructed from this list by adding an edge for each pair
(in descending order) to the network so long as the resultant
network remains planar (i.e., the network can be drawn on
a 2D plane such that no two edges intersect). This filtering
procedure is equivalent to that of constructing a planar
maximally filtered graph (Tumminello et al. 2005). Planar
graphs have the nice property of being easy to visualize in
two-dimensions, but it is unclear whether this restriction has
any psychological validity.

This method is typically used to estimate group-level
semantic networks, when the number of fluency lists is
large. When only a small number of fluency lists are
used (e.g., 3 to 5), the results can be unstable because
pairwise correlations with small data sets are biased to
extreme values, and are often undefined (i.e., if two items
always or never co-occur in a list).4 Also, there tend to
be many “ties” (identical correlations) that are produced.

4To mitigate this problem, a thresholding procedure is sometimes
applied (as in Kenett et al. 2013) to only include words that appear
in at least Tn lists. In our simulations (Section “Model Validation”),
we found that applying a small threshold of Tn = 2 produced worse
results, and so we report only the model results with no threshold.
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Our implementation omits an edge whenever a pairwise
correlation is undefined and does not use any principled
secondary criteria to further sort the edge list when ties
occur.

U-INVITE

The network estimation methods described so far work
under the assumption that items that co-occur frequently in
the same list or in close proximity to each other are likely to
be semantically related. This assumption is justified based
on the finding that fluency data tends to be clustered.
The estimated networks tend to be evaluated by qualitative
inspection. However, none of the techniques presuppose
psychologically plausible models for producing fluency
data. Instead, they rely on generic statistical heuristics that
identify clusters in the data.

Recent work in psychology has identified several
potential process models (Abbott et al. 2015; Hills et al.
2012; Zemla and Austerweil 2017) that generate clustered
fluency data. We propose a technique that capitalizes on
these advances by inverting a process model used to
simulate fluency data—specifically, the censored random
walk model of search on a semantic network (Abbott et al.
2015).

We call this method U-INVITE, building on a previous
model for constructing fully connected, weighted, and
asymmetric semantic networks from fluency data generated
by a censored random walk known as INVITE (Jun
et al. 2015). In contrast to INVITE, U-INVITE produces
networks with binary non-directional edge weights (0 or 1),
analogous to other methods described above, and produces
much sparser networks that are not fully connected.5 This
restriction facilitates estimating networks given small data
sets by constraining the possible weights for an edge to two
values: zero or one. It comes at the expense of being less
expressive. This is an example of the bias-variance dilemma,
where we have introduced bias to enable estimation from
small sample sizes (Geman et al. 1992; Griffiths 2010).

Estimating Semantic Networks with U-INVITE

The generative model of U-INVITE (shown in Fig. 2)
proposes that semantic fluency data can be modeled as a
censored random walk on a semantic network (Abbott et al.
2015; Zemla and Austerweil 2017). Given a network, the
initial item in a list is chosen stochastically based on the

5Note that we refer to networks as connected if there exists a path
between every pair of nodes in the network. The largest connected
component is the largest subset of nodes in the network where there
exists a path between every pair of nodes. We use fully connected to
mean that every pair of nodes is connected with an edge.

Fig. 2 Z denotes a set of independent uncensored random walks on
network G. A censoring function c(x) is applied to each walk to
produce a set of censored random walks X. This censoring function is
deterministic, and X denotes the observed (fluency) data

prior probability of a random walk encountering each item
in the network (i.e., the first item is chosen proportionally
to the number of neighbors connected to each node).
Subsequent list items are produced by following a random
walk on the network. A traditional random walk produces
many duplicate responses, because it traverses over many
nodes more than once. To avoid repetitions in a fluency list,
an additional constraint is applied: after a node is traversed
for the first time, subsequent traversals over that node are
censored (unobserved). This censoring process is analogous
to monitoring processes in lexical retrieval (e.g., Levelt et
al. 1999). Because of this censoring process, two items that
appear adjacent in a censored fluency list are not necessarily
directly connected by an edge in the network (see Fig. 3).
This results in fluency data that resembles the traditional
cluster-and-switch phenomenon, because not all observed
transitions in a fluency list share a semantic relation, as they
would in an uncensored random walk.

Assuming we have a set X of M fluency lists, where
each list has been generated by a censored random walk
on a semantic network, our objective is to calculate the
most likely semantic network G that could have produced
those lists, P(G | X). Here, we represent G as an N by
N binary and symmetric link matrix, where N denotes the
total number of unique responses across all fluency lists.
Assuming a uniform distribution over G and using Bayes’
rule, the most likely semantic network G is the one that
maximizes the likelihood of the data:

P(X1,...,XM |G) =
M∏

m=1

P
(
Xm

1

)
Nm−1∏

k=1

P
(
Xm

k+1|Xm
1:k

)
(6)

where Nm denotes the number of items in the mth censored
list, Xm denotes the mth censored list, and Xm

k denotes the
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Fig. 3 Each list (left) denotes a random walk on a semantic network (right). Items that appear more than once in a random walk are censored
(shown here in red/strikethrough) on all but their first occurrence. Censored random walks on a semantic network have been used to model human
semantic fluency data

kth item from the mth censored list. That is, the likelihood
of a semantic network is the product of all transition
probabilities across all lists, multiplied by the product of all
initial response probabilities (the probability of a random
walk having started at the first items in each list). For a
connected, undirected, unweighted network, the probability
of starting list m with item Xm

1 is proportional to the number
of edges connected to that node.

P
(
Xm

1

) = # of neighbors of Xm
1 in G

Total # of edges in G
(7)

The key to U-INVITE is to calculate transition probabili-
ties in the data by treating each transition as an independent
absorbing walk over a state space of nodes, where previ-
ously traversed nodes (i.e., Xm

1:k in Eq. 6) are treated as
transient, and all other nodes are treated as absorbing nodes
(Jun et al. 2015; Zemla et al. 2016). Specifically, a transition
probability P(Xm

k+1|Xm
1:k) is equivalent to the probability of

a walk starting at node Xm
k and being absorbed by node

Xm
k+1 where nodes Xm

1:k are transient and all unobserved
nodes are absorbing.

First, we translate the network G into a transition
probability matrix A (of the same dimensions), where

Aij = Gij
∑N

k=1 Gik

(8)

For each transition probability that we calculate, we reorder
this transition matrix so that the rows and columns are
arranged in list order. This forms a new matrix, A′. Items
that do not appear in a given list are excluded from A′.6 The
matrix is then subdivided into quadrants:

A′ =
(

Q R

0 I

)

(9)

Q denotes transitions between transient nodes and R

denotes transitions from transient to absorbing nodes. To

6Although these items are not explicitly encoded in A′, they are
implicitly accounted for because A′ is derived from the transition
matrix A, which does contain every item. In removing some rows and
columns from A to form A′, the transition probability mass for any
node in A′ does not always sum to 1.

ensure the walk is absorbing, the lower two quadrants of
the matrix are replaced with 0 (a matrix of zeros) and I

(the identity matrix). We can then calculate a transition
probability as:

P
(
Xm

k+1|Xm
1:k

) =
{ ∑k

i=1 EkiRi1 if E exists
0 otherwise

(10)

where E denotes the fundamental matrix of the Markov
chain for this transition (Doyle and Snell 1984):

E = (I − Q)−1 (11)

and Eij is the expected number of times a Markov chain
with transition matrix Q that starts at node i will visit node
j before being absorbed.

Network Search Procedure

We use a stochastic search procedure to find the semantic
network that maximizes the objective function given in
Eq. 6. A network is initialized using a secondary method
that ensures the fluency lists can be produced by a
censored random walk with non-zero likelihood (e.g., a
Naı̈ve Random Walk, or a fully connected network). In the
simulations below, we use a network initialization procedure
that starts with a network generated from a modified
Community Network technique. Typically, the Community
Network technique results in a network that cannot have
generated the data by a censored random walk (i.e., the
likelihood of the data given this network is zero). We
overcome this by iteratively inserting an edge between any
two responses in the data set whose transition probability is
zero, until the likelihood of the data is non-zero.

From this initial network, edges are toggled—either
pruned from or added to the network—one at a time.7 When

7Toggling multiple edges simultaneously is inefficient because often
the resultant network produces the data with zero probability. In fact,
even single edge changes can result in “impossible” networks because
the space of possible networks is highly constrained if we assume a
censored random walk as a generative process. This constraint has
made it challenging to use other techniques that can approximate the
posterior probability directly, such as Gibbs sampling (Geman and
Geman 1987). We leave this problem for future research.
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an edge change results in a network with a higher likelihood
of producing the data, the change is accepted; otherwise,
the edge change is reverted. This procedure continues
until no possible edge change produces a better network.
Although changing only one edge at a time is susceptible to
local maxima, we have found that this procedure performs
robustly given different network initializations for re-
estimating a network from censored lists generated from
that network.8

The order in which edges are toggled is non-random. We
adopt a set of heuristics for choosing which edges to toggle
in order to test the most promising edges first. We enumerate
a list of all possible edges and non-edges in the network
(excluding self-loops), and separate them into three groups:

1. Existing edges that can be pruned
2. Non-edges that can be added to form “triangles”

(Newman 2009), making the network more clustered
3. All other non-edges

Typically, a moderate proportion of edges in (1) are
pruned, a smaller number of edges in (2) are added, and
relatively few edges in (3) are added. We cycle through all
three of these groups in order to test the most probable edge
changes first. If a group is completed and an edge change
occurred, we start the process over with group (1).

Within each group, a utility value is attached to each
node. The utility value for node i reflects the average
likelihood of the data over all networks tested (in the current
group) that modify an edge attached to that node:

U(i) =
∑

g∈hi
P(X|g)

|hi | (12)

where hi is the set of networks that have been tested in
the current group where an edge connected to i has been
modified and |hi | is the number of networks in hi .

Instead of adding or removing edges at random within
each group, nodes are ranked according to their utility.
An edge between the two nodes with the highest utility
is toggled. This heuristic assumes that the likelihood of
the data depends on increasing or decreasing access to
certain nodes. This is consistent with previous findings that
semantic networks tend to be small-world-like (Steyvers
and Tenenbaum 2005), where a small number of nodes are
expected to have many edges and a large number of nodes
have very few edges. The heuristic relies on an assumption
that if the removal (or addition) of an edge connected to
a node makes the data more likely, then the removal (or

8See the Supplementary Material for more details.

addition) of other edges connected to that node will have a
similar effect on likelihood.

We arrived at this search procedure after trying a number
of different possible estimation procedures (e.g., stochastic
search that toggles a random edge on each step). This one
outperformed the others on simulated data. If all possible
edges are tested exhaustively, the heuristics do not have
a noticeable impact on the estimated network. That is,
toggling all possible edges in a random order typically
results in a similar network. However, the process of testing
all possible edges is computationally expensive (there are
2N(N−1)/2 possible networks), and using a heuristic to
prioritize edge changes results in quicker convergence of
the search procedure. Additionally, one could specify a
tolerance value for the number of edges to be toggled
before convergence, which can dramatically reduce the time
needed to find an adequate network.9

Hierarchical Model

Like other fluency-based network estimation techniques,
the accuracy of U-INVITE can suffer when only a small
amount of data is used to estimate a network. When dealing
with psychological data, it is typical to have only a small
number of lists per participant, making individual network
estimation difficult.

To aid estimation when given only a small amount of
fluency data, we introduce a hierarchical component to
the model that jointly estimates the networks of many
participants together. We do so by assuming that there is a
latent group-level network that generates each participant’s
network. This assumption has an effect during estimation
such that each individual network influences the group
network, and the group network serves as a prior when
estimating individual networks. The generative model for
this process is shown in Fig. 4. We call this model
Hierarchical U-INVITE.

The probability of any edge Gs
ij in an individual network

for participant s follows a zero-inflated beta-binomial
distribution. In a standard beta-binomial distribution, the
prior probability of an edge is proportional to the number of
participants who have that edge in their individual network.
Of all the individual networks that contain both i and j ,
αij denotes the number of these networks that do not have

9For the simulations reported below, we use the above heuristic
but do not set a tolerance value—so all possible edges are
toggled exhaustively until the search reaches a maximum. In the
Supplementary Material, we show that when a small tolerance value is
used, the estimated network is slightly worse but computation time is
dramatically reduced.
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Fig. 4 Each individual semantic network Gs is generated from a
group-level semantic network G′. The probability of an edge being
estimated in an individual network is dependent on the fluency data
for that participant, as well as the proportion of other participants who
have that edge in their network

an edge between i and j , while βij denotes the number of
networks that do have an edge between i and j :

0 (13)

1 (14)

where 1 is an indicator function that is one when there
is an edge between i and j is present in the network of
the sth participant and zero when there is no such edge. S

denotes the total number of participants.
In practice, using a standard beta-binomial distribution

to infer edges for an individual’s network results in a
biased estimation. The reason is data sparsity: Zm typically
represents a very small number of possible random walks
on a given network, traversing over a small fraction of the
edges. The data are further diluted by the censoring process
which makes only a portion of these transitions observable.
As a result, the beta-binomial distribution often predicts a
non-edge in a network not because the evidence favors a
non-edge, but because of the lack of evidence for an edge.

As such, the observed counts over-inflate the number of
networks that should not contain an edge (αij ). A zero-
inflated beta-binomial distribution compensates for this by
introducing a prior, phidden, which denotes the proportion
of the inferred non-edge counts (α) that result from data
sparsity. The use of zero-inflated distributions is common in

domains where an excess of “zeros” exist. For example, they
are often used in modeling linguistic word count data (e.g.,
Jansche 2003) where most words do not occur in a given
document, and in epidemiological data where a portion of
the population is not at risk for a disease (e.g., Araujo et al.
2011; Böhning et al. 1999).

In the zero-inflated beta-binomial distribution, the
proportion of observed non-edges is denoted by

γij = phidden(α0 + αij ) (15)

and the edge prior is denoted by

P
(
Gs

ij |γij , βij

)
= βij + β0

γij + βij + β0
(16)

where β0 and α0 are free parameters that influence the edge
prior when no information about an edge exists.

The maximum a posteriori group-level network can be
estimated from the prior by inferring an edge whenever

an edge prior P

(
Gs

ij |γij , βij

)
> .5, with the additional

constraint that βij > 1. This additional constraint
reduces spurious edges by ensuring that any edge in the
group network exists in at least two individual networks
(analogous to the threshold Tn used in the Community
Network approach). We chose phidden = .5, β0 = 1, and

α0 = 2 so that the prior on any edge is P
(
Gs

ij |γij , βij

)
= .5

when no data about that edge is available.10

Model Validation

To validate the different estimation methods, we conducted
a large-scale simulation study in which we constructed
an animal semantic network from the University of South
Florida (USF) free association norms (Nelson et al. 2004)
and simulated fluency data from this network using
censored random walks. We compare how well each
network estimation method is able to reconstruct the USF
network as the amount of simulated data varies. The USF
network is often assumed to be a “valid” semantic network,
in that it accurately reflects mental associations between
items in the network. This is because the free association
task (used to build the USF network) explicitly asks for
cue-response pairs to be associated, and most responses
are semantically related. As such, the USF network serves
as an important benchmark in semantic network research
(Griffiths et al. 2007; Nematzadeh et al. 2017).

10These parameters were obtained from a grid search when
initially developing the model, using USF network reconstruction
(Section “Model Validation”) as a benchmark. To avoid over-fitting,
we selected phidden = 0.5, which performed well over a range of
values for α0 and β0. We then set α0 and β0 to one such that they
encode an uninformative (i.e., uniform) prior for edges with no data.
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It is important to note, however, that because we are sim-
ulating data on this network, the psychological validity of
the network is not crucial for validating the method as a
whole. Nonetheless, the performance of a network estima-
tion technique will depend on the topology of that network
(Jun et al. 2015). The USF network is thought to have topo-
logical properties that resemble “valid” semantic networks,
such as a small-world-ness (De Deyne and Storms 2008;
Steyvers and Tenenbaum 2005), which makes it a better test
case than alternatives (e.g., a random network).

The USF free association norms have been used exten-
sively by psychologists as a standard for investigating the
properties of semantic networks and semantic relatedness.
Over three decades, the authors collected free response data
from over 6,000 participants and 5,019 cue words. We con-
structed a semantic network from these norms using only a
single category (animals) of cue-response pairs. We extrac-
ted every cue-response pair in the free-association data that
consisted of two animals and adjoined each pair by an edge.
From this, we used the largest connect component of the net-
work as our animal semantic network. This network consists
of 160 nodes (animals) and 393 undirected edges.

Fluency data were created for fifty simulated participants
by a censored random walk on the unweighted and
undirected USF semantic network. The initial item in
each walk was chosen with probability proportional to
the number of edges it has (Eq. 7). For each simulated
participant, we generated three fluency lists of 35 animals
each. As such, no simulated participant’s data spanned the
entire network. We varied how many simulated participants’
data were used to estimate the group network, and
compared the estimated network to the original USF
semantic network. The data for each simulated participant
is generated from the same network, and so the generative
model employed here matches that of non-hierarchical
U-INVITE; Hierarchical U-INVITE expects networks to
vary between participants. These simulations were repeated
ten times (resulting in ten simulated data sets of fifty
participants each).

Results

From this simulated fluency data set, we estimated seven
networks using each of the methods described earlier:
Naı̈ve Random Walk, First Edge, Community Network,
Correlation-Based Network, Pathfinder, U-INVITE, and
Hierarchical U-INVITE. Although each simulated partici-
pant produced three fluency lists, these lists were treated
as independent for all non-hierarchical methods (i.e., there
is no delineation of which list was generated by which
participant in these methods).

Figure 5 shows the performance of each of the methods in
reconstructing the USF network. We consider three metrics:

(1) total cost (i.e., the number of edge changes needed to
reach the USF network from the estimated network), (2) hits
(i.e., the number of edges in the USF network successfully
estimated by the method), and (3) false alarms (i.e., the
number of edges estimated by the method that are not in the
USF network).

All of the methods showed some ability to estimate the
USF network. Given enough data, the non-hierarchical U-
INVITE method performs the best and converges to the
USF network, while the Hierarchical U-INVITE method
trends in the same direction but does not converge after
fifty participants. One reason for this may be that the
hierarchical model assumes that each participant has some
individual variation, but the data are really generated from
one semantic network. In this simulation, all simulated
participant networks are identical, which matches the
generative process of the non-hierarchical version of U-
INVITE.

Other techniques perform well or poorly in different
situations. The Naı̈ve Random Walk performs well with
a small number of lists, while the Community Network
performs well with a moderate number of lists. However
both the Naı̈ve Random Walk and Community Network
techniques begin to do worse with a large amount of data,
suggesting that they will likely never estimate the USF
network even if additional data were provided to the model.
In contrast, the remaining methods continue to improve (or
plateau) as more data are provided.

The methods also differ in their sensitivity to hits and
false alarms. The First Edge method is limited to adding at
most one edge per list, but never infers a false edge. Both U-
INVITE methods as well as the Pathfinder Network manage
to keep false alarms relatively low. Naı̈ve Random Walk,
Community Network, and non-hierarchical U-INVITE are
the quickest at correctly identifying correct edges (hits).

Overall, the non-hierarchical U-INVITE model was best
able to reconstruct the USF network when given enough
data. More generally, the most appropriate method to use
may depend on several factors, including the amount of data
available to fit a network, one’s willingness to tolerate false
alarms, and the data’s adherence to the censored random
walk model. In the next section, we evaluate how well each
network estimation technique captures human similarity
judgments.

Experiment: a Comparison of Network
Estimation Techniques

Although these simulations validate U-INVITE as a
consistent method for estimating networks from censored
random walks, the psychological evidence in favor of U-
INVITE is predicated upon the validity of the censored
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Fig. 5 (Left) The total cost (misses plus false alarms) for each network
method is shown as the amount of data used to estimate the network
is increased. (Center) The number of hits for each network method
is shown. The dotted line represents 393 edges (the number of edges
in the USF network). (Right) The number of false alarms for each

network method is shown. Because the data are simulated using cen-
sored random walks, the First Edge method produces no false alarms.
All results are averaged across ten simulated data sets (i.e., each data
point is the average of ten networks)

random walk process model of memory retrieval. To address
the psychological validity of the networks estimated by
U-INVITE (and other methods), we estimated semantic
networks from human fluency data using each of the
methods described above and compared the similarity of
edges in each estimated network using an independent
group of raters.

Participants, Materials andMethods

Semantic Fluency Task Fifty participants (42% female,
ages 18-62, median age 30) were recruited from Amazon
Mechanical Turk to complete the repeated semantic fluency
task. Participants completed three fluency lists for each of
three categories (nine lists total): animals, tools, and food.
The lists were pseudo-randomized so that each triad of lists
contained one of each category, and that participants never
completed the same category in back-to-back lists.

For each list, participants were given three minutes to
name as many items from the category as possible, relying
only on their own memory. They were also instructed to
avoid repetitions within a list, but told that repetitions
across lists were fine. A countdown timer was shown for
each list as participants entered items into a text box. To

avoid memory cueing from previous responses, a list of
the participant’s previous responses was not shown on the
screen. Instead, each response faded from the screen after
the participant hit Enter (the fade animation took 800ms),
indicating that the item was recorded.

Only data from the animal category are analyzed here.
The food and tools categories were used as filler tasks
to minimize the effects of short-term memory and list
recall, and were not analyzed. Spelling errors in the data
were corrected, and responses were standardized (e.g.,
“hippo” to “hippopotamus,” “giraffes” to “giraffe”). As
is typical with healthy participants, intrusions (i.e., non-
animals) were rare and appeared to be limited only to
ambiguous items (e.g., do mythical creatures such as
unicorns count as animals?). Intrusions were not removed
from the fluency data. However, all perseverations were
removed from the data as they cannot be generated under the
U-INVITE generative model.11 In total, 34 items (roughly
.6% of all responses) were identified as perseverations (after

11The U-INVITE model described above describes a perfect censoring
process. This does not need to be the case, and future work
should explore whether including a faulty censoring process improves
estimation.
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Table 1 Each of the seven group networks are compared on several different network metrics

PF FE CN CBN NRW U-INVITE Hier. U-INVITE

Connected network? Yes No No Yes Yes Yes No

Number of nodes∗ 363 59 255 363 363 363 181

Number of edges 439 73 623 1083 2785 2663 224

Number of network components 1 4 4 1 1 1 7

Nodes in largest component 363 52 249 363 363 363 164

Network density∗ .007 .043 .019 .016 .042 .045 .014

Average shortest path length∗∗ 7.21 4.17 4.38 5.63 2.73 2.76 8.01

Average node degree∗ 2.42 2.47 4.89 5.97 15.34 14.67 2.48

Clustering coefficient∗ .003 .076 .311 .550 .228 .211 .160

∗Metric excludes nodes with no edges
∗∗Metric was calculated only on the largest component of the network

responses were standardized). On average, lists contained
35.8 responses, ranging from 6 to 68 responses per list.

Similarity Rating Task One hundred and one different
participants (39% female, ages 21–60, median age 30) were
recruited from Amazon Mechanical Turk to complete a
similarity rating task.

With the semantic fluency data collected from all fifty
participants, a group-level semantic network was generated
using each of the methods described above. 3,905 edges
(animal pairs) were estimated by at least one of these
methods.12 An additional 270 animal pairs were selected
at random where no method had inferred an edge.13 These
pairs were randomized and split into twenty batches roughly
equal in number. As such, approximately 6.5% of the animal
pairs in each batch were pairs that were not an edge in any
network. Each participant rated a single batch of animal
pairs. Each pair of animals was presented sequentially, and
participants were asked to rate the pair on a sliding scale
from 1 (“not at all similar”) to 100 (“very similar”). The
ordering of the pairs was randomized, as was the ordering
of animals within each pair.

Participants ticked a box to indicate if they did not
recognize at least one animal in the pair. These similarity
ratings (roughly 7% of the ratings) were removed prior
to analysis. In addition, another 3% of the ratings were
removed for having response times under 500 ms. After
outlier removal, each animal pair had an average of 4.6
similarity ratings.

12Due to an error, we did not obtain similarity ratings for 4 of these
edges.
13Originally, 200 non-edges were selected at random. Due to an error
when estimating networks, some animal pairs originally identified as
edges became non-edges.

Group Network Results

Group-level networks were constructed for each of the
seven methods used for the USF simulations. Although
each participant generated three fluency lists, each list was
treated as independent (i.e., treated as if it came from a
different participant) for all methods except Hierarchical U-
INVITE.14 Table 1 summarizes several properties of these
networks.

In total, 363 animals were listed at least once across
all fifty participants. However, not all of the networks
consist of a single component with all of these items.
Three networks (First Edge, Community Network, and
Hierarchical U-INVITE) consist of multiple unconnected
components. All of the networks are sparse (less than
5% of possible animal pairs were connected by an edge).
The networks vary in how much they are clustered, with
the Pathfinder Network showing very little clustering and
Correlation-Based Network showing very high levels of
clustering.

Figure 6 shows the average similarity rating of edges and
non-edges in each network.15 The 270 control non-edges
(animal pairs chosen at random—not shown in the figure)
received an average rating of 23.9, suggesting that all of
the methods were capable of extracting semantically similar
animal pairs as edges. The Hierarchical U-INVITE model

14The reason for this is that Hierarchical U-INVITE is the only method
sensitive to which participant produced each list.
15Note that unlike the mean rating for edges, the mean rating of non-
edges is based only on a sample of non-edges that were rated. In a
network of 363 nodes there are 65,703 possible animal pairs in total.
The estimated networks are sparse, so the vast majority of these pairs
are non-edges. It is prohibitive for human raters to exhaustively rate
these pairs. As such, the only non-edges that were rated are animal
pairs that appear as an edge in at least one method, as well as the
270 control non-edges. In other words, each mean non-edge rating is
derived from the 4,171 animal pair ratings collected, excluding all of
the edges in that network.
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performed the best, with an average edge similarity rating
of 66.4.

However, it is difficult to rely solely on mean edge
similarity ratings to compare methods, as the methods
produce networks that vary in size (see Table 1 to compare
network sizes). There is an inherent signal-to-noise trade-off
in estimating network edges. A conservative method may
estimate a small number of edges with high confidence,
and these edges are likely to be highly similar. Conversely,
a liberal method may estimate a large number of edges to
capture as many semantic associations as possible, at the
expense of including many edges that have low semantic
similarity. Figure 6 also shows the average similarity rating
of non-edges for each method. A lower average rating is
desirable for non-edges, indicating that the animal pairs
not estimated as edges are not semantically similar. The
Naı̈ve Random Walk and U-INVITE perform best here
(with average non-edge similarity ratings of 22.9 and 23.1,
respectively).

It should be noted that many of the network estimation
techniques employed here could easily be parameterized

to threshold a network, resulting in larger or smaller
networks. Some techniques in fact have multiple ways
to achieve this; for instance, the size of a Community
Network can be reduced by increasing the width of the co-
occurrence confidence interval, decreasing the window size
w, or increasing the co-occurrence threshold Tn. Because
many of these estimation techniques are highly flexible,
we considered a single implementation of each model
as typically used in the literature, noting any deviations
in the model descriptions in the sections above. Some
exceptions apply: the Naı̈ve Random Walk and First Edge
methods, as described, have zero free parameters and have
a fixed network size. The Pathfinder implementation is
parameterized to generate the sparsest possible network,
though other parameterizations could increase the density of
the network.

The ideal network estimation to use depends in part on
one’s tolerance for accepting bad edges or rejecting good
edges. To compare different methods across a continuum of
possible tolerance values, we computed a goodness score
which weights the contribution of edges and non-edges:

Fig. 6 The blue bars (right)
show the average similarity
rating across all edges in the
network for each method. The
yellow bars (left) show the
average similarity rating for all
non-edges in the network for
each method. Error bars denote
95% confidence interval
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GoodnessScore = c
∑

edges SimilarityScore + (1 − c)
∑

nonedges(101 − SimilarityScore)

c ∗ NumEdges + (1 − c) ∗ NumNonEdges
(17)

where c is a free parameter. When c = 1, the score reflects
only the goodness of the edges in a network (i.e., Fig. 6
right). Contrastly, when c = 0, a high score indicates a
tendency to reject bad edges only (i.e., Fig. 6 left). In Fig. 7,
we plot each network’s score as we vary c between 0 and 1.

When equal weight is given to edges and non-edges (c =
.5), the Community Network performs the best, indicating
that the method is effective at both estimating semantically
similar edges while rejecting semantically dissimilar animal
pairs. Note that since the networks are sparse, a weight
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Fig. 7 The average goodness
score for each network is shown,
varying the weight c given to
edges and non-edges. The solid
vertical bar indicates a sparsity
weighting (c = .85), which
approximately equalizes the
contribution of edges and
non-edges. The sparsity
weighting is the median sparsity
across all seven networks
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of c = .5 results in a score that is more influenced by
non-edges than edges. That is, even though edges and non-
edges are weighted equally, non-edges provide a larger
contribution to the numerator of Eq. 17 because the total
number of non-edges is higher than the total number of
edges. Given this asymmetry, it may be more reasonable to
weight edges more than non-edges. At these intermediate
values (.5 > c > 1), the Hierarchical U-INVITE model
typically performs best. One way to weight the importance
of edges is inversely proportional to the sparsity of the
network. This holds when the edge and non-edge portions of
the denominator are equal, i.e., c ∗ NumEdges = (1 − c) ∗
NumNonEdges. This value is different for each network,
as each network has a different level of sparsity. However,
we determined the median sparsity weight to be c = .85
across the seven networks,16 shown in Fig. 7 with a solid
vertical line.

Another way to compare the estimated networks is to
look at the proportion of edges in a given network that
are rated above a fixed threshold value. For example, one

16This sparsity weighting was determined based on the number of
edges and non-edges with ratings, as opposed to the absolute number
of edges and non-edges. This is done because non-edges without
ratings are not included in the calculation of the goodness score.

might want to estimate a network in which most edges
are expected to have a similarity rating of at least 50
out of 100. Figure 8 (left) shows the proportion of edges
in each network that have a rating above a threshold
value, varying the threshold on the x-axis from 0 to 100.
The curves in Fig. 8 bear some resemblance to receiver
operating characteristic (ROC) curves, commonly used in
signal detection domains to assess the sensitivity of a model
as a threshold of acceptibility is varied. In this case, the area
under each curve (a popular ROC metric; e.g., see Bradley
1997) is equivalent to the mean semantic similarity rating
for edges in that network.

The ordinal rankings of the network estimation tech-
niques vary very little depending on the threshold value.
Hierarchical U-INVITE consistently estimates networks
with the highest proportion of edges rated above a thresh-
old value (regardless of what that threshold is), whereas the
Correlation-Based Network consistently estimates networks
with a low proportion of edges above a threshold. This result
suggests that some methods (such as the Correlation-Based
Network) may consistently estimate too many edges with a
low similarity rating, whereas other methods (such as Hier-
archical U-INVITE) are more conservative but consistently
estimate good edges. In Fig. 8 (right), we show the pro-
portion of edges in each network estimated above a fixed
threshold of 50.
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Fig. 8 (Left) The proportion of edges (y-axis) that remain in the network after edges with similarity ratings less than a threshold (x-axis) are
removed. (Right) The proportion of edges that remain in each network after removing edges with a similarity rating less than 50

Individual Network Results

Though semantic networks are widely used in psychology,
the vast majority of this research focuses on group-level
semantic networks rather than explore individual variation
in semantic representations (though see Morais et al. 2013
and Zemla et al. 2016). Typical experimental designs collect
very few fluency lists per participant (often just a single list),
and existing methods are not well suited for constructing
networks from such a small amount of data. Methods such
as the Correlation-Based Network can be unstable because
a small number of data points can produce many undefined
correlations and/or perfect correlations, both of which are
problematic when converting the correlation matrix to a
network. It also ignores sequential dependencies between
items. Methods that rely on significance testing (such as
the Community Network) are unlikely to produce many
significant results with a small sample size, resulting in a
network with very few edges.

The Hierarchical U-INVITE method assumes that seman-
tic knowledge is shared across individuals. For example, if
Peter thinks a horse is like a zebra then Mary probably will
too, even if they may disagree on the strength of this sim-
ilarity. By using a group prior, the Hierarchical U-INVITE
method can estimate individual variation in semantic net-
works by determining where deviations from the group
network would lead to better fits of an individual’s data.

We constructed individual semantic networks for each of
the fifty participants using each of the methods described
above. Properties of these networks are described in
Table 2. Analogous to the group-level network analysis,

we computed the mean similarity rating of edges (and
non-edges) in each network. All of the edges in the
individual networks were present in at least one of the group
semantic networks (thus, similarity ratings were available
for every edge in every individual network—but, as with the
group networks, ratings were not collected for most non-
edges). To compare network estimation techniques, we then
averaged the mean similarity ratings of networks across all
participants. The results are shown in Fig. 9.

The Community Network method produced networks
with the highest mean similarity rating (61.2) but, as
expected, estimated very few edges per participant (about 20
edges per participant). These networks nearly always con-
sisted of multiple unconnected components, and the method
estimated an empty network (a network with no edges)
for four participants. Similarly, the First Edge method also
consistently produced extremely sparse networks (about 2
edges per participant) that were typically unconnected.

The Correlation-Based Network produced the largest
networks, with roughly 127 edges per participant. However
like the Community Network and First Edge methods,
not all of the nodes in the networks had edges. Though
the networks were large, the mean semantic similarity
of the network’s edges was lower than that of smaller
networks generated by other methods, indicating a size-
quality trade-off. The remaining methods (Naı̈ve Random
Walk, U-INVITE, Hierarchical U-INVITE, and Pathfinder)
all produced networks that were roughly similar in mean
edge similarity, with Pathfinder the highest at 46.2.

The networks showed little variance in the similarity
ratings of non-edges. One explanation for this is that
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Table 2 Network metrics were calculated first on each individual network, then averaged across all 50 participants for that method (standard
deviation shown in parentheses)

PF FE CN CBN NRW U-INVITE Hier. U-INVITE

Prop. of non-empty networks 1.0 1.0 .92 1.0 1.0 1.0 1.0

Prop. of connected networks 1.0 0.36 0.04 1.0 1.0 1.0 1.0

Number of nodes∗ 59.4 (18.5) 4.1 (1.5) 23.9 (14.2) 44.4 (19.8) 59.4 (18.5) 59.4 (18.5) 59.4 (18.5)

Number of edges 62.3 (19.6) 2.4 (0.8) 20.2 (15.1) 127.3 (59.4) 88.0 (26.7) 84.6 (26.3) 84.4 (27.1)

Number of network components 1.0 (0) 1.9 (0.8) 7.6 (3.5) 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

Nodes in largest component 59.4 (18.5) 2.4 (0.5) 4.9 (2.2) 44.4 (19.8) 59.4 (18.5) 59.4 (18.5) 59.4 (18.5)

Network density∗ .04 (.01) .5 (.32) .14 (.2) .16 (.08) .06 (.02) .06 (.02) .06 (.02)

Average shortest path length∗∗ 10.3 (3.9) 1.1 (0.2) 1.6 (0.6) 2.7 (0.6) 5.2 (4.0) 5.3 (4.0) 5.2 (3.9)

Average node degree∗ 2.1 (.1) 1.1 (.1) 1.5 (.4) 5.7 (.2) 3.0 (.4) 2.9 (.4) 2.9 (.3)

Clustering coefficient∗ .04 (.04) 0 (0) .28 (.22) .59 (.03) .08 (.05) .06 (.04) .07 (.04)

All metrics calculated on non-empty networks only. ∗Metric excludes nodes with no edges. ∗∗Metric was calculated only on the largest component
of the network

only a small sample of non-edges were rated (see
Section “Participants, Materials and Methods”), and most
of these non-edges appear in all networks. As such, the
sets of non-edge ratings in each network largely overlapped
with each other. Nonetheless, the Hierarchical U-INVITE
method generated networks with the lowest mean non-edge
similarity rating (29.4).

Limitations

The present work provides the first known attempt to
compare many different methods for constructing semantic

networks from fluency data. As such, there are limitations
to be addressed by future work.

We collected and analyzed fluency data for the animal
category, which is very common in the semantic fluency
literature. Although the literature suggests that fluency
data from other semantic categories exhibits similar
structure (e.g., clustered responses), these network inference
techniques should be validated on other semantic categories.
Similarly, it is not certain whether these network inference
methods would work equally well on non-semantic fluency
data. The phonemic fluency task (listing words that begin
with a particular letter or sound) is commonly used and
may rely on different cognitive and neural mechanisms

Fig. 9 The average similarity
rating of edges and non-edges in
the estimated individual
networks is shown for each
method. The Community
Network (CN) produces
networks with the highest mean
similarity rating, though these
networks are very sparse
(sometimes containing no edges
at all) and often contain multiple
unconnected components. We
found little difference in the
average non-edge similarity
rating across the methods. Error
bars denote 95% confident
intervals
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(Troyer et al. 1998). These results call into question whether
a censored random walk is appropriate for modeling non-
semantic fluency data.

It is not clear how our findings would differ if we assume
that mental search can stray from the target category. Abbott
et al. (2015) proposed a censored random walk model in
which search paths can navigate through non-category items
which are then censored (e.g., a walk might traverse an
indirect path from “dog” to “bone” to “dinosaur” when
listing animals, with “bone” being censored). Any network
inferred from semantic fluency data is necessarily limited
to only the items that appear in those lists. This can pose
a problem for network estimation techniques that expect
associations to be direct, as indirect associations could result
in spurious or weakly related edges.

We used a single paradigm to test all network inference
methods: the repeated fluency task with three lists per
individual and three minutes per list in a single session.
Historically, participants are usually give one minute to
produce one list; however, experiments vary in how many
fluency lists are collected and the time limit provided for
each list. We expect that the estimated networks would
improve with more data (more lists or more time per list)
and worsen with less data, but we have not provided a
systematic comparison. The nature of the repeated fluency
task may introduce artifacts in the data that might be
explained by short-term list memory, rather than long-
term semantic memory. For example, Zemla and Austerweil
(2017) found that bigrams are commonly repeated across
lists in a single session. These co-occurrences may lead to
spurious edges in an estimated semantic network if these
transitions are the result of short-term priming rather than
long-term semantic association.17 Similarly, primacy and
recency effects may emerge from the repeated fluency task.
In our data set, 16 of 50 participants started at least two lists
with the same animal, and 11 participants started all three
lists with the same animal. Future research should explore
the interaction between short and long-term memory when
modeling fluency data.

In Section “Model Validation,” we found that these
network inference techniques are successful at inferring
networks when lists are produced by a censored random
walk. It is less clear whether these techniques are equally
successful when adherence to the random walk model of
memory retrieval is not obeyed, or whether the advantages
and disadvantages of each technique are robust to parameter
changes for each model.

Finally, our results highlight several network inference
techniques used to estimate unweighted and undirected
networks. We do not know whether these techniques would

17Zemla and Austerweil (2017) discuss a generative model that
accounts for these bigrams, though that model is not validated here.

be successful at inferring network structure if the data were
generated from a weighted or directed network.

Discussion

Although semantic networks are widely used in psychology,
how to best construct a psychologically valid semantic net-
work remains an open problem (Baronchelli et al. 2013).
We developed novel non-hierarchical and hierarchical esti-
mation techniques derived from a psychologically plausible
model of memory retrieval. We evaluated five existing meth-
ods for constructing category-level networks from semantic
fluency data and our own methods using validations via
computer simulations and behavioral experiments.

Overall, based on the simulation and experimental
results, we caution to advocate for a single network
estimation technique. Rather, the best technique likely
depends on the goal of the researcher. In Fig. 10, we show
how to find an appropriate technique, given our results
above. We suggest three key decisions that determine the
best technique to use: (1) Do you want to generate a group-
level network or individual-level networks? (2) Should
the estimated network include a node for every response
in the data and should the network be connected (i.e.,
should there be a path from every node to every other
node?) This constraint is often important in psychological
modeling; however, forcing this requirement can increase
the number low quality (or spurious) edges. (3) Do you
prefer to maximize edge similarity in part by estimating
few edges (conservative), or minimize non-edge similarity,
in part by estimating many edges (liberal)? Note that we
only make this distinction for the group-level network, as
we found virtually no difference in the quality of non-edges
for individual networks across the different methods.

Aside from the factors illustrated in Fig. 10, a major
difference in the estimation techniques is whether they
adhere to a psychological process model of memory
retrieval. To our knowledge, U-INVITE (both hierarchical
and non-hierarchical versions) is the first proposed network
inference method that is tied to a specific process
model of how semantic fluency data is produced: the
censored random walk (Abbott et al. 2015; Zemla et al.
2016). Methods that are not tied to a specific process
sometimes result in more accurate networks when this
process is misspecified. However, specification of a
retrieval process allows researchers to test hypotheses
about how impairments to the retrieval process affect
the data that is produced. This may be particularly
important given the wide use of the semantic fluency
task in patients with semantic deficits such as those
with Alzheimer’s disease, Huntington’s disease, and other
neurodegenerative diseases—each of which may produce
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Fig. 10 Based on our
experimental results above, this
flow chart provides guidance for
selecting an appropriate network
estimation technique
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differentially impaired profiles on the semantic fluency
task (e.g., Randolph et al. 1993). Even for non-patient
populations, experimental design choices (such as the
amount of time between fluency lists) may influence aspects
the retrieval process (Zemla and Austerweil 2017) and
individual differences may affect semantic representation
(Kenett et al. 2014). Modeling the retrieval process may
provide greater insight into how semantic representations
differs across groups (e.g., young and old, expert and non-
expert, impaired and non-impaired).

From our simulation studies, we found that only
two methods (U-INVITE and First Edge) are consistent
estimators under the assumption that fluency data is
produced by a censored random walk. In a simulated data
set, we found that U-INVITE can reproduce the widely
used USF semantic network (Nelson et al. 2004) with only
a moderate amount of data. Consistency is a desirable
theoretical property for statistical estimators as it means
that the estimator will converge to the correct answer, given
enough data.

We also compared the ability of all seven estimation
techniques to produce psychologically valid semantic
networks by comparing ratings of semantic similarity
of edges in each network. The average ratings from
each network were higher than the ratings of randomly
selected animal pairs (the control non-edges), suggesting
that all of the methods reviewed here are capable of

estimating reasonable networks to some extent. Hierarchical
U-INVITE produced a network with the highest average
similarity rating for edges, although this may partially
reflect a trade-off between network size and edge quality.

Overall, the most appropriate network inference method
may depend on a number of factors, including the amount
of data used to construct the network, tolerance for false
alarms or misses, and the desire to construct individual
or group level networks. Two methods that appear to
perform particularly well across a range of tests (using
both simulated and human fluency data) are the Community
Network method and the Hierarchical U-INVITE method.
In addition, both of these methods have sufficient flexibility
to manipulate the number of estimated edges when signal-
to-noise trade-offs are important.

The extant literature on semantic networks uses a
variety of techniques to construct those networks. As
such, the method employed constitutes a “researcher
degree of freedom” that can significantly affect results.
An understanding of the strengths and weaknesses of
these methods allows researchers to choose an appropriate
network estimation technique, and to fairly assess the
results that follow from that choice. Our suggested best
practices provide guidance to researchers, which we hope
will encourage them to use the best method for their specific
study and reduce researcher degree of freedom. This will
increase confidence in network analyses, as it discourages
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examining different network metrics while varying network
estimation techniques until one finds a metric-estimation
combination that yields a significant difference.
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Supplementary material All experiment data analyzed in this
manuscript (semantic fluency data and the similarity rating data),
derived semantic networks (individual and group networks gener-
ated for each method), R code to regenerate all figures in the
manuscript, and additional supplementary material as noted through-
out the manuscript is available online at https://osf.io/uy9jx/. In addi-
tion, a Python library created to generate networks using each of the
described techniques is available at https://github.com/AusterweilLab/
snafu-py.
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